上周六(1月10日),北京有一场“AGI-Next 前沿峰会”,由清华大学基础模型实验室主办。
中国顶尖的 AI 大模型领导者,很多都出席了。•唐杰:清华大学教授,智谱创始人•杨植麟:月之暗面 Kimi 创始人•林俊旸:阿里 Qwen 技术负责人•姚顺雨:OpenAI 前核心研究者、腾讯 AI 新部门负责人
他们谈了对大模型和中国 AI 发展的看法,网上有发言实录[1]。
内容非常多,有意思的发言也很多,下面是我摘录的部分内容。
一、唐杰的发言
1、智谱的起源
2019年,我们开始研究,能不能让机器像人一样思考,当时就从清华成果转化,在学校的大力支持下,成立了智谱这么一家公司,我现在是智谱的首席科学家。
那个时候,我们实验室在图神经网络、知识图谱方面,在国际上做的还行,但我们坚定地把这两个方向暂停了,暂时不做了,所有的人都转向做大模型。
2、泛化和 Scaling
我们希望机器有泛化能力,我教它一点点,它就能举一反三。就和人一样,教小孩子的时候,我们总希望教三个问题,他就会第四个、第十个,甚至连没教过的也会。怎么让机器拥有这种能力?
目前为止,我们主要通过 Scaling(规模化)达到这个目标,在不同层面提高泛化能力。
(1)我们最早期用 Transformer 训练模型,把所有的知识记忆下来。训练数据越多、算力越多,模型的记忆能力就越强,也就是说,它把世界上所有的知识都背下来了,并且有一定的泛化能力,可以抽象,可以做简单的推理。比如,你问中国的首都是什么?这时候模型不需要推理,它只是从知识库里拿出来。
(2)第二层是把模型进行对齐和推理,让它有更复杂的推理能力,以及理解我们的意图。我们需要持续的 Scaling SFT(Supervised Fine-Tuning,监督式微调),甚至强化学习。通过人类大量的数据反馈,不断 Scaling 反馈数据,可以让模型变得更聪明、更准确。
(3)今年是 RLVR(强化学习与可验证奖励)爆发年。这里的“可验证”是什么意思?比如,数学可以验证、编程可能可以验证,但更广泛地,网页好不好看,就不大好验证了,它需要人来判断。
这就是为什么这个事情很难做,我们原来只能通过人类反馈数据来做,但人类反馈的数据里面噪音也非常多,而且场景也非常单一。
如果我们有一个可验证的环境,这时候我们可以让机器自己去探索、自己去发现这个反馈数据,自己来成长。这是我们面临的一个挑战。
3、从 Chat 到做事:新范式的开始
大家可能会问,是不是不停地训练模型,智能就越来越强?其实也不是。
2025年初,DeepSeek 出来,真是横空出世。大家原来在学术界、产业界都没有料到 DeepSeek 会突然出来,而且性能确实很强,一下子让很多人感到很震撼。
我们当时就想一个问题,也许在 DeepSeek 这种范式下,Chat(对话)差不多算是解决了。也就是说我们做得再好,在 Chat 上可能做到最后跟 DeepSeek 差不多。或许我们可以再个性化一点,变成有情感的 Chat,或者再复杂一点,但是总的来讲,这个范式可能基本到头了,剩下更多的反而是工程和技术的问题。
那么,AI 下一步朝哪个方向发展?我们当时的想法是,让每个人能够用 AI 做一件事情,这可能是下一个范式,原来是 Chat,现在是真的做事了。
当时有两个方向,一个是编程,做 Coding、做 Agent;另一个是用 AI 来帮我们做研究,类似于 DeepResearch,甚至写一个复杂的研究报告。我们现在的选择是把 Coding、Agentic、Reasoning 这三个能力整合在一起。
二、林俊旸的发言
4、千问是怎么开源的
千问的开源模型比较多,很多人问这是为什么?
这起源于2023年8月3日,我们开源了一个小模型,它是我们内部用来做实验的 1.8B 模型。我们做预训练,资源毕竟有限,你做实验的话不能通通用 7B 的模型来验,就拿 1.8B 的来验。
当时我的师弟跟我说,我们要把这个模型开源出去。我非常不理解,我说这个模型在2023年几乎是一个不可用的状态,为什么要开源出去?他跟我说 7B 很消耗机器资源,很多硕士生和博士生没有机器资源做实验,如果 1.8B 开源出去的话,很多同学就有机会毕业了,这是很好的初心。
干着干着,手机厂商跑来跟我们说 7B 太大,1.8B 太小,能不能给我们干一个 3B 或 4B 的,这个容易,没有什么很难的事情。一路干下来,型号类型越来越多,跟服务大家多多少少有一点关系。
5、我们的追求是多模态模型
我们自己内心追求的,不仅仅是服务开发者或者服务科研人员,而是能不能做一个 Multimodal Foundation Agent(多模态基础智能体)。
我特别相信这件事情,2023年的时候大模型是一个大家都不要的东西,多多少少有那么几分大炼钢铁的成分,多模态是我们从那时就一直想做的事情。
为什么呢?我们觉得如果你想做一个智能的东西,天然的应该是 Multimodal(多模态),当然带有不同看法,各个学者都有一些看法,多模态能不能驱动智力的问题。我懒得吵这个架,人有眼睛和耳朵可以做更多的事情,我更多的考虑是 Foundation(基础智能体)有更多的生产力,能不能更好地帮助人类,毫无疑问我们应该做视觉,我们应该做语音。
更进一步,我们要做什么东西呢?Omni 的模型(全模态模型)不仅仅是能够理解文本、视觉、音频,我们可能还让它生成文本、音频。今天我们已经做到了,但是我们还没有做到把视觉生成结合在一起。如果做到三进三出,我觉得至少是我个人喜欢的东西。
三、姚顺雨的发言
6、To C 和 To B 的差异
我的一个观察是 To C(消费者模型)和 To B(商业用户模型)发生了明显的分化。
大家一想到 AI,就会想到两个东西,一个是 ChatGPT,另外一个是 Claude Code。它们就是做 To C 和 To B 的典范。
对于 To C 来说,大部分人大部分时候不需要用到那么强的智能,可能今天的 ChatGPT 和去年相比,研究分析的能力变强了,但是大部分人大部分时候感受不到,更多把它当作搜索引擎的加强版,很多时候也不知道该怎么去用,才能把它的智能激发出来。
但对于 To B 来说,很明显的一点是智能越高,代表生产力越高,也就越值钱。所以,大部分时候很多人就是愿意用最强的模型。一个模型是200美元/月,第二强或者差一些的模型是50美元/月、20美元/月,我们今天发现很多美国的人愿意花溢价用最好的模型。可能他的年薪是20万美元,每天要做10个任务,一个非常强的模型可能10个任务中八九个做对了,差的是做对五六个,问题是你不知道这五六个是哪五六个的情况下,需要花额外精力去监控这个事情。
所以,在 To B 这个市场上,强的模型和稍微弱点的模型,分化会越来越明显。
7、垂直整合和模型应用分层
我的第二点观察是,基础模型和上层应用,到底是垂直整合,还是模型应用分层,也开始出现了分化。
比如,ChatGPT Agent 是垂直整合,Claude(或者 Gemini)+ Manus 是模型应用分层。过去大家认为,当你有垂直整合能力肯定做得更好,但起码今天来看并不一定。
首先,模型层和应用层需要的能力还是挺不一样的,尤其是对于 To B 或者生产力这样的场景来说,可能更大的预训练还是一个非常关键的事情,这个事情对于产品公司确实很难做。但是想要把这么一个特别好的模型用好,或者让这样的模型有溢出能力,也需要在应用侧或者环境这一侧做很多相应的事情。
我们发现,其实在 To C 的应用上,垂直整合还是成立的,无论 ChatGPT 还是豆包

