社区应用 最新帖子 精华区 社区服务 会员列表 统计排行
  • 3454阅读
  • 5回复

核心硬件详解+超频精华大集合----100%的简单易懂,不超频的也能从中受益

楼层直达
级别: 光盘初级
发帖
301
飞翔币
335
威望
48
飞扬币
1311
信誉值
0
引用

核心硬件详解+超频精华大集合----100%的简单易懂,不超频的也能从中受益
有人提出做成电子书,这是可以的,但是我还是希望在这之前大家能对文中不足和错误进行指正,对欠缺的内容进行补充,我不希望电子书里边有错误,误导读者就是我的错了/电子书中我也会把那些链接文章也加进来,使其成为真正的超频宝典)
老鸟和高手就不必来此了,呵呵

一共四篇,看完这个你就对核心硬件就掌握的差不多了,重要关键的地方我已用特别颜色突出显示。若想进一步提高自己,请参考其他更高深的资料。如:
BIOS维修网站
等等
PS:文章80%是转来的,加上我自己所知添加更新而成。
希望大家都能顶一下,增加点人气

首先说明一点:本文主要是原理理论讲解(但也足够实践动手超频了),关于实践动手超频也可参考以下文章,请点击以下链接:

1. 玩转超频!Athlon64处理器最详细超频指南手册

2. 超频不难 手把手教你实测闪龙2500+

3. 生动的入门经典!CPU超频全方位攻略!

4. 看清显存种类挑选显卡

5. 解读3代DDR显卡

目录索引:

通向高手之路!DIY超频经典教程

1.什么是超频?

2.超频的危险

3.A.基础知识

3.B.基础知识(续)-----深入主频、外频、超频

4.怎样超频

5.RAM及它对超频的影响

6.超频RAM

7.购买更高速的RAM

8.电压及它怎样影响超频

9.散热

10.超频秘技

11.超频FAQ

k8超频指南(见1楼)

超频无止境 市售最能超处理器全曝光(见2楼)

超频的高级知识(见4楼)

通向高手之路!DIY超频经典教程
---------精华中的精华!强烈建议看完这篇

1.什么是超频?
  超频是使得各种各样的电脑部件运行在高于额定速度下的方法。例如,如果你购买了一颗Pentium 4 3.2GHz处理器,并且想要它运行得更快,那就可以超频处理器以让它运行在3.6GHz下。

郑重声明!
  警告:超频可能会使部件报废。超频有风险,如果超频的话整台电脑的寿命可能会缩短。如果你尝试超频的话,我将不对因为使用这篇指南而造成的任何损坏负责。这篇指南只是为那些大体上接受这篇

超频指南/FAQ以及超频的可能后果的人准备的。有少部分人对系统检测的工具不了解,在此稍微说明下:1.Cpu-Z,可以侦测CPU的信息,包括主板、内存等信息的检测CPU-Z同样可以胜任; 2.EVEREST(原名AIDA32),测试软硬件系统信息的工具,它可以详细的显示出PC每一个方面的信息,包括CPU等的温度、电压; 3..............................
  为什么想要超频?是的,最明显的动机就是能够从处理器中获得比付出更多的回报。你可以购买一颗相对便宜的处理器,并把它超频到运行在贵得多的处理器的速度下。如果愿意投入时间和努力的话,超频能够省下大量的金钱;如果你是一个象我一样的狂热玩家的话, 超频能够带给你比可能从商店买到的更快的处理器。

2.超频的危险
  
首先我要说,如果你很小心并且知道要做什么的话,那对你来说,通过超频要对计算机造成任何永久性损伤都是非常困难的。不严格地说,我们可以认为风险近似于零。
事实上,增加微处理器的频率不应该造成任何损害,但仅仅把它推向极限是很难烧毁系统的。在最坏的情况下,处理器将在选择的频率下不工作,而改回它的原始频率,它就又运转了,就像什么都没有发生过一样。
  然而仍有危险。
第一个也是最常见的危险就是发热。
在让电脑部件高于额定参数运行的时候,它将产生更多的热量。如果没有充分散热的话,系统就有可能过热。不过一般的过热是不能摧毁电脑的。由于过热而使电脑报废的唯一情形就是再三尝试让电脑运行在高于推荐的温度下。就我说,
应该设法抑制在60 C以下。
  不过无需过度担心过热问题。在系统崩溃前会有征兆。随机重启是最常见的征兆了。过热也很容易通过热传感器的使用来预防,它能够显示系统运行的温度。如果你看到温度太高的话,要么在更低的速度下运行系统,要么采用更好的散热。稍后我将在这篇指南中讨论散热。
  超频的另一个“危险”是它可能减少部件的寿命。在对部件施加更高的电压时,它的寿命会减少。小小的提升不会造成太大的影响, 但如果打算进行大幅超频的话,就应该注意寿命的缩短了。然而这通常不是问题,因为任何超频的人都不太可能会使用同一个部件达四、 五年之久,并且也不可能说任何部件只要加压就不能撑上4-5年。
大多数处理器都是设计为最高使用10年的,所以在超频者的脑海中 ,损失一些年头来换取性能的增加通常是值得的。

3.A.基础知识
  为了了解怎样超频系统,首先必须懂得系统是怎样工作的。用来超频最常见的部件就是处理器了。
  在购买处理器或CPU的时候,会看到它的运行速度。例如,Pentium 4 3.2GHz CPU运行在3200MHz下,这是对一秒钟内处理器经历了多少个时钟周期的度量。一个时钟周期就是一段时间,在这段时间内处理器能够执行给定数量的指令。所以在逻辑上,处理器在一秒内能完成的时钟周期越多,它就能够越快地处理信息,而且系统就会运行得越 快。1MHz是每秒一百万个时钟周期,所以3.2GHz的处理器在每秒内能够经历3,200,000,000或是3十亿200百 万个时钟周期。相当了不起,对吗?
  超频的目的是提高处理器的GHz等级,以便它每秒钟能够经历更多的时钟周期。计算处理器速度的公式是这个:
  
外频(以MHz为单位)×倍频 = 速度(以MHz为单位)。
  现在来解释外频、FSB和倍频是什么:


外频是CPU乃至整个计算机系统的基准频率,单位是MHz(兆赫兹)。
  
FSB(对AMD处理器来说是HTT*,AMD把内存控制器集成在芯片里了),或前端总线,就是整个系统与CPU通信的通道。所以,FSB能运行得越快,显然整个系统就能运行得越快。
在AMD Athlon 64 CPU上,术语FSB实在是用词不当,本质上并没有FSB,FSB被整合进了芯片。这使得FSB与CPU的通信比Intel的标准FSB方法快得多。它还可能引起一些混乱,因为Athlon 64上的FSB有时可能被说成HTT。如果看到某些人在谈论提高Athlon 64 CPU上的HTT,并且正在讨论认可为普通FSB速度的速度,那么就把HTT当作FSB来考虑。在很大程度上,它们以相同的方式运行并且能够被视为同样的事物,而把HTT当作FSB来考虑能够消除一些可能发生的混淆。

注意:外频与前端总线(FSB)频率很容易被混为一谈。前端系统总线(Front Side Bus,简称FSB)是CPU和主板的北桥芯片或者MCH(内存控制集线器)之间的数据通道。它的速度(频率)高低影响着CPU访问内存的速度,更实质性的表示了CPU和外界数据传输的速度。而外频的概念是建立在数字脉冲信号震荡速度基础之上的,是CPU与主板之间同步运行的速度,它更多的影响了PCI及其他总线的频率。如果还不明白,就看这个例子吧:200MHz外频特指数字脉冲信号在每秒钟震荡二千万次;而200MHz前端总线指的是每秒钟CPU可接受的数据传输量是200MHz×64bit÷8Byte/s=1600MB/s。
之所以前端总线与外频这两个概念容易混淆,主要的原因是在以前的很长一段时间里(主要是在Pentium 4出现之前和刚出现Pentium 4时),前端总线频率与外频是相同的,因此往往直接称前端总线为外频,最终造成这样的误会。随着计算机技术的发展,人们发现前端总线频率需要高于外频,因此采用了QDR(Quad Date Rate)技术,或者其他类似的技术实现这个目的。这些技术的原理类似于AGP的2X或者4X,它们使得前端总线的频率成为外频的2倍、4倍甚至更高,从此之后前端总线和外频的区别才开始被人们重视起来。

注意:所以,一些文章讲超频、分频之类提到超FSB时实际上是指超“外频”,也即FSB潜在的真实速度,是指没有乘那个2或4系数的值(比如FSB为800MHz,也即200MHz×400=800MHz,超频所改变的值是指改变200这个指,例如把200超到250,当然FSB也从800变成250×4=1000了)。因此,在超频中提到FSB时大家应该辨别-----是等于外频的值,还是乘以系数后的值。
  CPU厂商已经找到了增加CPU的FSB有效速度的方法。他们只是在每个时钟周期中发送了更多的指令。所以CPU厂商已经有 每个时钟周期发送两条指令的办法(AMD CPU),或甚至是每个时钟周期四条指令(Intel CPU),而不是每个时钟周期发送一条指令。那么在考虑CPU和看FSB速度的时候,必须认识到它不是真正地在那个速度下运行。 Intel CPU是“四芯的”,也就是它们每个时钟周期发送4条指令。这意味着如果看到800MHz的FSB,潜在的FSB速度其实只有200MHz,但它每个时钟周期发送4条指令,所以达到了800MHz的有效速度。相同的逻辑也适用于AMD CPU,不过它们只是“二芯的”,意味着它们每个时钟周期只发送2条指令。所以在AMD CPU上400MHz的FSB是由潜在的200MHz FSB每个时钟周期发送2条指令组成的。
  这是重要的,因为在超频的时候将要处理CPU真正的FSB速度(即外频值),而不是有效CPU速度。
  速度等式的倍频部分也就是一个数字,乘上外频速度就给出了处理器的总速度。例如,如果有一颗具有200MHz外频(也即在乘二或乘四之前的真正FSB速度)和10倍频的CPU,那么等式变成:
  (外频)200MHz×(倍频)10 = 2000MHz CPU速度,或是2.0GHz。
 在某些CPU上,例如Intel自1998年以来的处理器,倍频是锁定不能改变的。在有些上,例如AMD Athlon 64处理器,倍频是“封顶锁定”的,也就是可以改变倍频到更低的数字,但不能提高到比最初的更高。在其它的CPU上,倍频是完全放开的,意味着能够把它改成任何想要的数字。这种类型的CPU是超频极品,因为可以简单地通过提高倍频来超频CPU。
  
在CPU上提高或降低倍频比超外频容易得多了。这是因为倍频和外频不同,它只影响CPU速度。改变外频时,实际上是在改变每个单独的电脑部件与CPU通信的速度。这是在超频系统的所有其它部件了。这在其它不打算超频的部件被超得太高而无法工作时, 可能带来各种各样的问题。
不过一旦了解了超频是怎样发生的,就会懂得如何去防止这些问题了。

在此,顺便提及下显卡的显存和内存的标准工作电压:

1. DDR显存:2.5V。 // DDR2显存:1.8V // DDR3显存:1.8V,耗电量较DDR2明显降低。
显卡超频较简单,常用的测试超频工具主要有--PowerStrip ,ClockGen (

www.cpuid.com主页
),N卡用的NVCool , ATi显卡用的ATiTool

2. SDRAM内存一般工作电压都在3.3伏左右,上下浮动额度不超过0.3伏;DDR266/DDR333/DDR400/DDR533的标准电压是2.5~2.66V(DDR266、DDR333可以将内存电压设定为2.5V,DDR400内存电压设定为2.63V或2.65V,);而DDR2 SDRAM内存的工作电压一般在1.8V左右。具体到每种品牌、每种型号的内存,则要看厂家了,但都会遵循标准电压,在允许的范围内浮动。


3.B.基础知识(续)-----深入主频、外频、超频


时钟和频率
  在电子技术中,脉冲信号是一个按一定电压幅度,一定时间间隔连续发出的脉冲信号。我们将第一个脉冲和第二个脉冲之间的时间间隔称为周期;而将在单位时间(如1秒)内所产生的脉冲个数称为频率。
  频率是描述周期性循环信号包括脉冲信号在单位时间内所出现的脉冲数量多少的计量名称;频率的标准计量单位是Hz(赫)。电脑中的系统时钟就是一个典型的频率相当精确和稳定的脉冲信号发生器。
  频率在数学表达式中用“f”表示,其相应的单位有:Hz(赫)、kHz(千赫)、MHz(兆赫)、GHz(吉赫)。其中1 G=1000MHz,1MHz=1000kHz,1kHz=1000Hz。计算脉冲信号周期的时间单位及相应的换算关系是:s(秒)、ms(毫秒)、μs (微秒)、ns(纳秒),其中:1s=1000ms,1 ms=1000μs,1μs=1000ns。
  电脑中的时钟和我们日常所用的“时钟”可不一样,它没有现在是“几点几分”的指示,而仅仅是一个按特定频率连续发出脉冲的信号发生器。至于电脑主板COMS中保留日期和时间的功能则另当别论。
  电脑系统中为什么要有时钟?举个例子说吧,我们在做广播操时总要放广播操的录音(或要一人喊口令),这样几十个做操的人中虽然有男有女,有老有少但只要都按统一的节拍做,就可以将广播操做得比较整齐。
  同样,电脑中是一个复杂数据处理系统,其中CPU处理数据是按照一定的指令进行的,每次执行指令时,CPU内部的运算器、寄存器和控制器等都必须相互配合进行,虽然每次执行的指令长短不一,参与运算的CPU内部单元也不止一个,但由于都能按照统一的时钟脉冲同步地进行,所以整个系统才能协调一致地正常运行。
  况且电脑中除CPU外,还有存储系统和显示系统等,由于这些分系统运行时也需用特定频率的时钟信号用于规范运行,所以在电脑系统中除了CPU主频和系统时钟外,还有用于ISA和PCI总线和AGP显示接口的时钟,当然这些时钟的频率都低于系统时钟。

主频和外频
  在电脑中,系统总线通常是指CPU的I/O接口单元与系统内存、L2 Cache和主板芯片组之间的数据、指令等传输通道。系统总线时钟就是我们常说的系统时钟和CPU外部时钟(外频),它是电脑系统的基本时钟,电脑中各分系统中所有不同频率的时钟都与系统时钟相关联。
  由于从486DX2(CPU)开始,CPU的内核工作频率和外频(系统时钟频率)就不一致了。
  在586、686电脑中,系统时钟就是CPU的“外频”,而将系统时钟按规定比例倍频后所得到时钟信号作为CPU的内核工作时钟。CPU内核工作时钟频率也就是我们平常所说的电脑主频,例如说某电脑是Pentium-233,那么这台电脑的系统时钟是66MHz,而它的主频则是(66×3.5)= 233MHz。
  
各分系统时钟和AGP接口时钟都是由系统时钟按照一定的比例分频或倍频得到的,所以调整电脑中的系统时钟频率必然将改变其它各分系统时钟信号频率,影响各分系统的实际运行情况,这一点对电脑发烧友进行CPU超外频运行时应该加以充分重视。

主频、外频和运算速度
  在电脑数据通信中计算数据传输速率常使用公式:时钟频率×数据总线宽度÷8=Betys/s。
  在电脑系统中,CPU与系统内存、显示接口(如AGP“总线”)以及通过主板芯片组与扩展总线(ISA、PCI)之间进行数据交换时,是按相应的时钟频率进行的。例如当系统时钟为66MHz时,系统内存与CPU之间的数据传输率是528MB/s。
  AGP高速显示接口工作在X1方式的时钟频率也是66MHz,但由于数据宽度只有32位,所以AGP接口的数据传输速率只能达到266MB/s 。
  PCI总线的数据宽度虽然也是32位,但由于PCI总线时钟频率只有33MHz,所以PCI总线的数据传输最高速率只有133MB/s。
  在Intel公司推出440BX主板芯片将系统时钟频率由原来的66MHz提高到100MHz后,CPU与系统内存之间的数据交换速率就达到了 800MB/s(100×64÷8)。从这点可以看出,在同样的数据宽度条件下,只要提高工作时钟频率就能提高传输通道的数据传输速率。
  另外,提高CPU的主频对提高CPU运算速度也是非常有效的措施。举例说吧,假设某型CPU能在1个时钟周期执行一条运算指令,那么当CPU运行在100MHz主频时将比它运行在50MHz主频时速度快一倍。
  因为100MHz的时钟周期比50MHz的时钟周期占用时间减少了一半,也就是工作在100MHz主频的CPU执行一条运算指令所需时间仅为10ns比工作在50MHz主频时的20ns缩短了一半,自然运算速度也就快了一倍。
  只不过电脑的整体运行速度不仅取决于CPU运算速度,还与其它各分系统的运行情况有关,所以在人们不断设法提高CPU工作主频的同时,还在努力试图提高电脑的系统时钟频率。
  这些努力的最终目的是想提高电脑的总体运行速度,因为只有当电脑中的CPU运算速度、各分系统运行速度和各分系统之间的数据传输速度都能得到提高后,电脑整体的运行速度才能真正得到提高

制约主频、外频提高的因素
  既然提高CPU主频和系统时钟频率可以提高电脑系统的运算速度,那么为什么至今为止CPU的主频和电脑系统时钟频率还不能提得更高呢?这都是因为提高CPU时钟频率和系统时钟频率受到了一些暂时还无法克服的技术障碍所造成的。
  提高CPU工作主频主要受到生产工艺的限制。由于CPU是在半导体硅片上制造的,在硅片上的元件之间需要导线进行联接,由于在高频状态下要求导线越细越短越好,这样才能减小导线分布电容等杂散干扰以保证CPU运算正确。
  如果更低的工艺技术过关,那么生产出主频更高的CPU是毫无问题的,如果再能解决IBM提出的铜基导体技术难题,那么更有可能制造出工作主频更高的CPU。
  另一方面,提高系统时钟频率的尝试也受到了运行速度较慢的外部器件制约。几十年来,虽然外部设备,主要是数据存储设备技术也在逐步发展,但其发展的速度同CPU的发展进度相比是不可同日而语的。
  以硬盘为例,尽管生产厂家丝毫没有松懈地努力对硬盘制造技术进行改进,然而硬盘的读、写的实用速度也仅在7MB/s左右,硬盘接口也只能工作在66MHz左右的时钟下,一旦时钟频率提高太多,硬盘就可能无法正常运行。
  系统时钟频率改变的同时也改变了ISA和PCI等扩展总线的时钟频率,因此必然影响联接在这些接口上的外部设备运行状态,所以我们不能无节制地去提高系统时钟频率。

超频运行与外频的选择
  电脑中CPU的主频与系统时钟有对应关系,如Pentium 166的166MHz主频就是将66MHz的系统时钟进行2.5倍频而获取的,因此从理论上讲,将Pentium 166的倍频系数改为3就可以使它运行在200MHz的主频下,这就是我们常说的所谓CPU“超频”,实际上有很多人就是这样做的,甚至许多Remark 的CPU也是因此而产生。'
  “超频”损害了CPU生产商的利益,所以Intel对其多数CPU产品进行了“锁频”技术处理,这种锁频CPU采用固定倍频系数的方法去限制用户对CPU超频运行。
  锁频CPU的表现是当用户人为设置的倍频系数超过原CPU的倍频系数时,CPU就仍然采用原倍频系数对系统时钟倍频,保证CPU运行在标称频率值上。
  例如锁频Pentium 133的倍频系数被锁定在2上,因此无论你如何在主板上设置倍频系数,你也无法迫使它运行在高于133MHz的主频上。具体表现是当主板设置的CPU内核时钟超过标称值时,CPU一概不予理睬,仍然按规定的倍频系数运行在133MHz主频上。
  但道高一尺,魔高一丈,针对Intel的锁频,不少电脑爱好者另辟蹊径,找出了采用提高系统时钟频率(实际上也就是提高CPU的外频)的方法强制锁频的CPU运行在高出标称值很多的主频上。
  具体方法就是将原66MHz的系统时钟提高到75MHz或83MHz上,然后适当调高CPU的工作电压,这样尽管CPU的倍频系数不变也能使 Pentium 133运行在(75×2)=150MHz或(83×2)=166MHz的主频上。对于其它锁频的686 CPU如Pentium Ⅱ 233等,也可以按此方法进行处理。
  不过采用提高系统时钟的并不一定在每一台电脑上都能成功,这是因为系统时钟频率提高后,电脑中系统内存、PCI总线时钟和AGP显示接口的时钟频率都提高了。
  因此我们在对没有锁频的CPU和被锁频的CPU超频时要区别处理。对没有锁频的CPU,我们可以采用保持正常系统时钟(CPU外频)频率,提高CPU倍频系数的方法进行超频,超频能否成功仅取决CPU本身的性能和质量。
  而在采用提高系统时钟方法对锁频CPU进行超频时,超频能否成功则不但取决于CPU的性能和质量外,还取决于系统内存(RAM)、硬盘和AGP显示卡等部件的性能和质量,所以,我们在对CPU进行超频运行时必须要考虑到以上这些因素,适可而止。

4.怎样超频
  那么现在了解了处理器怎样到达它的额定速度了。非常好,但怎样提高这个速度呢?

首先说一点,决定超频潜力的因素是:1.温度是最影响超频的因素。事实上,为了保证在最恶劣气候条件下的稳定性,厂商设立了必要的安全范围。厂商设定的这个数据称为Tcase,从而定义了处理器在保持稳定的同时能够达到的最高温度。分派的值取决于厂商的标准,例如AMD的最大Tcase(通常)是70摄氏度,那就是处理器能够忍受的最高温度,同时处理器的内部在它的操作频率下不会遇到稳定性的问题。因而可以推断,处理器的内部温度越低于Tcase,它的超频潜力就越高。多数超频记录都是靠压缩液氮这样的散热系统把处理器的温度维持在负值下取得的,这并非偶然。因而可以推断,处理器的内部温度越低于Tcase,它的超频潜力就越高。多数超频记录都是靠压缩液氮这样的散热系统把处理器的温度维持在负值下取得的,这并非偶然;2.处理器批次,或者说是制造过程。在一个范围内递增的几个型号是基于相同的构架和相同的制造过程的。例如,采用Socket 754的Athlon 64 2800+,3000+,3200+和3400+其实就是相同的处理器,它们之间唯一的差异是为它们设定的倍频。它们分别是:9×,10×,11×和12 ×。微处理器的最终频率是外频与这个倍频的乘积。Athlon 64的基本外频是200 MHz。对于前面提到的处理器,对应的频率是1800 MHz,2000 MHz,2200 MHz和2400 MHz,对处理器倍频的分配是在生产流程的最后实现的。由于生产上的种种原因,低频处理器比高频的更好超。特别是我们所用的3000+,它能够达到AMD 处理器靠风冷所能获得的最高频率。3500+通常不能与这些3000+相比。但购买低端处理器必须拥有全面的知识。事实上,低频处理器比那些初始频率较高的处理器更容易在外频上获得提升,所以前者拥有真正的超频潜力。
  
超频最常见的方法是通过BIOS。
在系统启动时按下特定的键就能进入BIOS了。用来进入BIOS最普通的键是Delete 键,但有些可能会使用象F1,F2,其它F按钮,Enter和另外什么的键。在系统开始载入Windows(任何使用的OS)之 前,应该会有一个屏幕在底部显示要使用什么键的。
  假定BIOS支持超频*,那一旦进到BIOS,应该可以使用超频系统所需要的全部设置。最可能被调整的设置有:
  
倍频,外频,RAM延时,RAM速度及RAM比率。
  在最基本的水平上,你唯一要设法做到的就是获得你所能达到的最高外频×倍频公式。完成这个最简单的办法是提高倍频,但那在一些处理器上无法实现,因为倍频被锁死了。其次的方法就是提高外频。这是相当具局限性的,所有在提高外频时必须处理的RAM问题都将在下面说明。一旦找到了CPU的速度极限,就有了不只一个的选择了。
  
如果你实在想要把系统推到极限的话,为了把外频升得更高就可以降低倍频。
要明白这一点,想象一下拥有一颗2.0GHz的处 理器,它采用200MHz 外频和10倍频。那么200MHz×10 = 2.0GHz。显然这个等式起作用,但还有其它办法来获得2.0GHz。可以把倍频提高到20而把外频降到100MHz,或者可以把外频升到250MHz而把倍频降低到8。这两个组合都将提供相同的2.0GHz。
那么是不是两个组合都应该提供相同的系 统性能呢?
  不是的。因为外频是系统用来与处理器通信的通道,应该让它尽可能地高。所以如果把外频降到100MHz而把倍频提高到2 0的话,仍然会拥有2.0GHz的时钟速度,但系统的其余部分与处理器通信将会比以前慢得多,导致系统性能的损失。
 在理想情况下,为了尽可能高地提高外频就应该降低倍频。

原则上,这听起来很简单,但在包括系统其它部分时会变得复杂,因为 系统的其它部分也是由外频决定的,首要的就是RAM。这也是我在下一节要讨论的。


5.RAM及它对超频的影响
  
受提高外频影响最大的部件就是RAM。
在购买RAM时,它是被设定在某个速度下的。我将使用表格来显示这些速度:
PC-2100 - DDR266
PC-2700 - DDR333
PC-3200 - DDR400
PC-3500 - DDR434
PC-3700 - DDR464
PC-4000 - DDR500
PC-4200 - DDR525
PC-4400 - DDR550
PC-4800 - DDR600
  要了解这个,就必须首先懂得RAM是怎样工作的。RAM(Random Access Memory,随机存取存储器)被用作CPU需要快速存取的文件的临时存储。例如,在载入游戏中平面的时候,CPU会把平面载入到RAM以便它能在任何需要的时候快速地访问信息,而不是从相对慢的硬盘载入信息。
  要知道的重要一点就是RAM运行在某个速度下,那比CPU速度低得多。今天,大多数RAM运行在133MHz至300MHz 之间的速度下。这可能会让人迷惑,因为那些速度没有被列在我的图表上。这是因为RAM厂商仿效了CPU厂商的做法,设法让RAM在每个RAM时钟周期发送两倍的信息。这就是在RAM速度等级中DDR的由来。它代表了Double Data Rate(两倍数据速度)。所以DDR 400意味着RAM在400MHz的有效速度下运转,DDR 400中的400代表了时钟速度。因为它每个时钟周期发送两次指令,那就意味着它真正的工作频率是200MHz。这很像Intel的 “四芯”FSB。
  那么回到RAM上来。之前有列出DDR PC-4000的速度。PC-4000等价于DDR 500,那意味着PC-4000的RAM具有500MHz的有效速度和潜在的250MHz时钟速度。
  所以超频要做什么呢?
  如我之前所说的,在提高外频的时候,就有效地超频了系统中的其它所有东西。这也包括RAM。额定在PC-3200(DDR 400)的RAM是运行在最高200MHz的速度下的。对于不超频的人来说,这是足够的,因为外频无论如何不会超过200MH z。
  
不过在想要把外频升到超过200MHz的速度时,问题就出现了。因为RAM只额定运行在最高200MHz的速度下,提高外频到高于200MHz可能会引起系统崩溃。这怎样解决呢?有三个解决办法:使用外频:RAM比率,超频RAM或是购买额定在更高速度下的RAM。
  因为你可能只了解那三个选择中的最后一个,所以我将来解释它们:
  外频:RAM比率:如果你想要把外频提高到比RAM支持的更高的速度,可以选择让RAM运行在比外频更低的速度下。这使用外频:RAM比率来完成。基本上,外频:RAM比例允许选择数字以在外频和RAM速度之间设立一个比率。假设你正在使 用的是PC-3200(DDR 400)RAM,我之前提到过它运行在200MHz下。但你想要提高外频到250MHz来超频CPU。很明显,RAM将不支持 升高的外频速度并很可能会引起系统崩溃。为了解决这个,可以设立5:4的外频:RAM比率。基本上这个比率就意味着如果外频运行在5MHz下,那么RAM将只运行在4MHz下。
  更简单来说,把5:4的比率改成100:80比率。那么对于外频运行在100MHz下,RAM将只运行在80MHz下。基 本上这意味着RAM将只运行在外频速度的80%下。那么至于250MHz的目标外频,运行在5:4的外频:RAM比率中, RAM将运行在200MHz下,那是250MHz的80%。这是完美的,因为RAM被额定在200MHz。
  然而,这个解决办法不理想。
以一个比率运行外频和RAM导致了外频与RAM通信之间的时间差。这引起减速,而如果RAM 与外频运行在相同速度下的话是不会出现的。如果想要获得系统的最大速度的话,使用外频:RAM比率不会是最佳方案。

6.超频RAM
  超频RAM实在是非常简单的。超频RAM的原则跟超频CPU是一样的:让RAM运行在比它被设定运行的更高的速度下。幸好两种超频之间的类似之处很多,否则RAM超频会比想象中复杂得多。
  
要超频RAM,只需要进入BIOS并尝试让RAM运行在比额定更高的速度下。
例如,可以设法让PC-3200(DDR 400)的RAM运行在210MHz的速度下,这会超过额定速度10MHz。这可能没事,但在某些情况下会导致系统崩溃。如果这发生了,不要惊慌。通过提高RAM电压,问题能够相当容易地解决。
RAM电压,也被称为vdimm,在大多数BIOS中是能够调节的。
用最小的可用增量提高它,并测试每个设置以观察它是否运转。一旦找到一个运转的设置,可以要么保持它,要么尝试进一步提高 RAM。然而,如果给RAM加太多电压的话,它可能会报废。
  
在超频RAM时你只还需要担心另一件事,就是延时。这些延时是在某些RAM运行之间的延迟。基本上,如果你想要提高RAM速度的话,可能就不得不提高延时。
不过它还没有复杂到那种程度,不应该难到无法理解的。 在此,稍微提及下内存参数的一些术语:
1、CL(CAS Latency)
  中文名称为“内存读写操作前列地址控制器的潜伏时间”,在BIOS中的选项可能为:2、2.5和3。随着DFI NF4主板的出现,还增加了1.5这个极限选项。这个参数很重要,内存条铭牌上一般都有推荐参数。较低的CAS周期能减少内存的潜伏周期以提高内存的工作效率。因此只要能够稳定运行操作系统,我们应当尽量把CAS参数调低。反过来,如果内存运行不稳定,可以将此参数设大,以提高稳定性。
2、tRCD(RAS-to-CAS Delay)
  中文为“行寻址至列寻址延迟时间”,一般选项有2、3、4、5,别名有Active to CMD等。对于延迟时间,当然是数值越小,性能越好。
  
3、tRP(RAS Precharge Time)
  “内存行地址控制器预充电时间”一般只有2、3、4三个选项。这个参数的名称也比较多,一般有RAS Precharge、Precharge to active几种。tRP值越低,预充电参数越小,则内存读写速度就越快。
4、tRAS(RAS Active Time)
  “内存行有效至预充电的最短周期”nForce系列主板对它的调节幅度最大,从1到15都可选择。别名也是最多的: Active to Precharge Delay、Row Active Time、Precharge Wait State、Row Active Delay、Row Precharge Delay、RAS Active Time等等。调整这个参数需要结合具体情况而定,推荐参数选项有5,6或者7这3个。大多数情况还要结合主板和CPU情况,并不是说越大或越小就越好。
5. Command Rate
这个选项也就是所谓的“1T、2T”,全名“首命令延迟”,一般还被描述为DRAM Command Rate、CMD Rate等。由于DDR内存在寻址时,先要进行P-Bank的选择(通过DIMM上CS片选信号进行),然后才是L-Bank/行激活与列地址的选择。这个参数的含义就是指在P-Bank选择完之后多少时间可以发出具体的寻址的L-Bank/行激活命令,单位是时钟周期。显然,也是越短越好。但当随着主板上内存模组的增多,控制芯片组的负载也随之增加,过短的命令间隔可能会影响稳定性。因此当你的内存插得很多而出现不太稳定的时间,才需要将此参数调长。目前的大部分K8主板默认参数都比较保守,采用2T。
  这就是关于它的全部了。如果只超频CPU是很简单的。

7.购买更高速的RAM
  这是整个指南中最简单的了,如果你想要把FSB提高到比如说250MHz,只要买额定运行在250MHz下的RAM就行了, 也就是DDR 500。对这个选择唯一的缺点就是较快的RAM将比较慢的RAM花费更多。因为超频RAM是相对简单的,所以可能应该考虑购买较慢的RAM并超频它以符合需要。根据你需要的RAM类型,这可能会省下许多钱。
  这基本上就是关于RAM和超频所需要了解的全部了。现在进入指南的其它部分。

8.电压及它怎样影响超频
   在超频时有一个极点,不论怎么做或拥有多好的散热都不能再增加CPU的速度了。这很可能是因为CPU没有获得足够的电压。跟前面提到的内存电压情况十分相似。
为了解决这个问题,只要提高CPU电压,也就是vcore就行了。
以在RAM那节中描述的相同方式来完成这个。一旦拥有使CPU稳定的足够电压,就可以要么让CPU保存在那个速度下,要么尝试进一步超频它。跟处理RAM一 样,小心不要让CPU电压过载。每个处理器都有厂家推荐的电压设置,在网站上找到它们,设法不要超过推荐的电压。

紧记提高CPU电压将引起大得多的发热量。这就是为什么在超频时要有好的散热的本质原因。
那引导出下一个主题。

9..散热
  如我之前所说的,在提高CPU电压时,发热量大幅增长。这必需要适当的散热。基本上有三个“级别”的机箱散热:
  
风冷(风扇)
  水冷
  Peltier/相变散热(非常昂贵和高端的散热)

  我对Peltier/相变散热方法实在没有太多的了解,所以我不准备说它。你唯一需要知道的就是它会花费1000美元以上, 并且能够让CPU保持在零下的温度。它是供非常高端的超频者使用的,我想在这里没人会用它吧。
  然而,另外两个要便宜和现实得多。
  每个人都知道风冷。如果你现在正在电脑前面的话,你可能听到从它传出持续的嗡嗡声。如果从后面看进去,就会看到一个风扇。这 个风扇基本上就是风冷的全部了:使用风扇来吸取冷空气并排出热空气。有各种各样的方法来安装风扇,但通常应该有相等数量的空气被 吸入和排出。
  水冷比风冷更昂贵和奇异。它基本上是使用抽水机和水箱来给系统散热的,比风冷更有效。
  那些就是两个最普遍使用的机箱散热方法。然而,好的机箱散热对一部清凉的电脑来说并不是唯一必需的部件。其它主要的部件有CPU散热片/风扇,或者说是HSF。HSF的目的是把来自CPU的热量引导出来并进入机箱,以便它能被机箱风扇排出。在CPU上 一直有一个HSF是必要的。如果有几秒钟没有它,CPU可能就会烧毁。
  好了,这就是超频的基础了。

10.超频秘技
  
a.CPU超频和CPU本身的“体质”有关
  很多朋友们说他们的CPU加压超频以后还是不稳定,这就是“体质”问题。对于同一个型号的CPU在不同周期生产的可超性不同,这些可以从处理器编号上体现出来。(可以参见“超频无止境 市售最能超处理器全曝光”的介绍)
  b.倍频低的CPU好超
  大家知道提高CPU 的FSB比提高CPU倍频性能提升快,如果是不锁倍频的CPU,高手们会采用提高FSB降低倍频的方法来达到更好的效果。
  c.制作工艺越先进越好超
  制作工艺越先进的CPU,在超频时越能达到更高的频率。比如Intel采用90纳米的制造工艺的Prescott核心。
  d.温度对超频有决定性影响
  大家知道超频以后CPU的温度会大幅度的提高,配备一个好的散热系统是必须的。这里不光指CPU风扇,还有机箱风扇等。另外,在CPU核心上涂抹薄薄一层硅脂也很重要,可以帮助CPU良好散热。
  e.主板是超频的利器
  一块可以良好支持超频的主板一般具有以下优点:(1)支持高外频。(2)拥有良好供电系统。如采用三相供电的主板或有CPU单路单项供电的主板。(3)有特殊保护的主板。如在CPU风扇停转时可以立即切断电源,部分主板把它称为“烧不死技术”。(4)BIOS中带有特殊超频设置的主板。(5)做工优良,最好有6层PCB板。


11.超频FAQ
  这只是对超频的基本提示/技巧的汇集,以及它是什么和它包括什么的一个基本的概观。
  
1.超频能到什么程度?
  不是所有的芯片/部件超频都一样的。仅仅因为有人让Prescott上到了5 GHz,那并不意味着你的就保证能到4 GHz,等等。每块芯片在超频能力上是不同的。有些很好,有些是LJ,大多数是一般的。试过才知道。
 
2.这是好的超频吗?
  你对获得的感到快乐吗?如果肯定的话,那就是了(除非它只有5%或更少的超频---- - 那么就需要继续了,除非超频后变得不稳定了)。否则就继续。如果到达了芯片的界限,那就无能为力了。

3. 多热才算过热/多少电压才算太高?
  作为对于安全温度的一个普通界定,在满负荷下的温度对P4来说应该是低于60 C,而对Athlon来说是55 C。越低越好,但温度高时也不要害怕。检查部件,看它是否很好地在规格以内。至于电压,1.65至1.7对P4来说是好的界限, 而Athlon能够上到风冷下1.8/水冷下2.0 - 一般而言。根据散热的不同,更高/更低的电压可能都是适当的。芯片上的界限是令人惊讶地高。例如在Barton核心Athlon XP+上的最大温度/电压是85 C和2.0伏。2伏对大多数超频来说足够的,而85 C是相当高的。

4.我需要更好的散热吗?
  取决于当前的温度是多少和你正打算对系统做什么。如果温度太高,那就可能需要更好的散热了,或至少需要重新安放散热片和整理电线了。良好的电线布置能够对机箱空气流动起很大的作用。同样,散热剂的适当应用对温度来说是很重要的。让散热片尽可能地紧贴处 理器。如果那帮助不大或完全没用,那么你可能需要更好的散热了。

5.什么是最常见的散热方法?

最常见的方法是风冷。它是在散热片之上放一个风扇,然后扣在CPU上面。这些可能会很安静,非常吵或是介于两者之间,取决于 使用的风扇情况。它们会是相当有效的散热器,但还有更有效的散热方案。其中之一就是水冷,但我将稍后再讨论它。
  风冷散热器是由Zalman,Thermalright,Thermaltake,Swiftech,Alpha,Cool ermaster,Vantec等等这些公司制造的。Zalman制造某些最好的静音散热设备,并以它们的“花形散热器”设计而 闻名。它们有最有效的静音散热设计之一7000Cu/AlCu(全铝或铝铜混合物),它还是性能较好的设计之一。Thermal right在使用适当的风扇时是(相当)无可争议的最高性能散热设备生产者。Swiftech和Alpha在Thermalri ght走上前台之前是性能之王,现在仍是极好的散热设备,并且能够用于比Thermalright散热设备更广阔的应用领域,因 为它们通常比Thermalright散热设备更小并适合更多的主板。Thermaltake生产大量的廉价散热器,但恕我直言 ,它们实在不值。它们表现不出跟其它散热设备厂商的散热片相同的水平,不过它们能用在廉价机箱中。这覆盖了最受欢迎的散热设备厂 商。
  再来说水冷。水冷主要仍是边缘方案,但一直在变得更主流化。NEC和HP制造了能以零售方式购买的水冷系统。尽管如此,绝大 多数的水冷仍然是面向发烧友领域的。在水冷回路中包括有几个最基本的部件。至少有一个水箱,通常在CPU上,有时也在GPU上。 有一个水泵,有时有蓄水池。还有一到两个散热器。
  水箱通常是以铜或(较少见的)铝建造。甚至更少见但正在变得多起来的是银造的水箱。对水箱有几个不同种类的内部设计,但在这 里我不准备深入讨论那些。水泵负责推动水通过回路。最常见的水泵是Eheim水泵(1046,1048,1250),Hydor (L20/L30)及Danner Mag3。Iwaki水泵也流行在高端群体之中。Swiftech MCP600水泵正变得更加受欢迎。那两个都是高端12V水泵。蓄水池是有用的,因为它增加了回路中水的体积并使得填充和放气( 把气泡排出回来)及维护更容易了。然而,它占据了大多数机箱中相当可观的空间(小的蓄水池就不碍事),并且它还相对容易会泄漏。 散热器可以是像Swiftech的散热器或Black Ice散热器这样的成品,也可以用汽车加热器核心改装。加热器核心通常好在出众的性能以及较低的价格,但也更难以装配,因为它们 通常不会采用能被水冷快速而容易地使用的形状。油箱散热器对那些有奇怪尺寸需求的来说是个可供选择的办法,因为它们采用非常多变 的形状和尺寸(不过通常是矩形)。然而,它们的表现不如加热器核心好。管道系统在性能上也是一个要素。通常对高性能来说,1/2 '直径被认为是最好的。不过,3/8'甚至是1/4'直径的装备正变得更常见,而它们的性能也正在逼近1/2'直径回路的。这节 中关于水冷要说的就是这么多了。

6.什么是有些少见的散热类型?
  相变、冷冻水、珀尔帖效应(热能转换器)和淹没装备是少见的,但性能更高。珀尔帖效应散热和冷冻水回路两者都是基于水冷的, 因为它们是采用改良的水冷回路的。珀尔帖效应是这些类型当中最常见的。珀尔帖是在电流通过时一边变热而另一边变冷的设备。这能够 被用在CPU和水箱之间或GPU和水箱之间。少见的是对北桥的珀尔帖散热,但这实在是没有必要。冷冻水回路使用珀尔帖或相变来使 回路中的水变凉,通常替代回路中给CPU/GPU散热的散热器。使用珀尔帖来做这个工作不是很有效率的,因为它经常需要另一个水 冷回路来使它变凉。珀尔帖通常被散热设备和水箱或水箱跟另一个水箱夹在中间。相变方法包括在A/C单元中放置冷气头或冷气部件, 或是像在蓄水池中那样。在冷冻水装备中防冻剂通常以大约50/50的比率添加到水中,因为结冰就不好了。管道系统必须是绝缘的, 水箱也是如此。相变包括一个压缩机和一个连接到CPU或GPU的冷却头。在这里我不准备太深入地讨论它。
 其它不常见的方法包括干冰,液氮,水冷PSU和硬盘,及其它类似的。使用机箱作为散热设备也被考虑到并试过了。

7.预制的水冷系统怎样?
  Koolance和Corsair是唯一真正值得考虑的。小的Globalwin产品还行,但并不比任何中高端风冷好。其余 的都不行。避免用它们。最新的Thermaltake产品可能不错。新套件可能是相当好的(Kingwin产品似乎就是这样), 但在购买任何产品之前要阅读若干评测,并至少有一个是在你将使用的平台上测试的。


8.超频的危险是什么?
关于超频有几个危险,它们显然不应该被忽视。超规格运行任何部件将缩短它的寿命;不过新的芯片在处理这个问题上远好于旧的产 品,所以这几乎不成为问题了。对于长期稳定性,例如像准备一直连续运行超过2年或类似工作时间的电脑,超频不是好的想法。而且,超频也有可能会破坏数据,所以如果你没有备份任何重要数据的话,超频实在是不适合你的,除非你能不费力地恢复数据,并且它不会引起任何问题。但在开始超频前要考虑到可能的数据丢失。如果你只有一台电脑并且需要它来做重要的 事的话,不推荐超频(特别是在高电压下的大幅超频),因为部件损坏的可能性还是有的,所以也需要被考虑。

9.我要怎样超频?
这是一个相当复杂的问题,但基础是很简单的。最简单的方法就是提高FSB。这几乎在任何平台上有效。
  在某些Athlon XP芯片上,倍频是可调节的。这些芯片被称为“非锁定的”。除了完全不锁定的FX系列之外,Athlon 64系列允许倍频调节到更低的倍频。Pentium 4是锁死的,除非你通过某些渠 道获得了工程样品。然而,几乎所有的主板都允许倍频调节,只要CPU支持它。
  一旦系统因为CPU限制而变得不稳定,那有两个选择。可以要么降低一点回到它稳定的位置,要么可以提高CPU电压(可能还有 RAM和AGP电压)到它变得稳定为止,或甚至是升得更高以进一步超频。如果提高CPU电压或提高内存电压没有帮助的话,你还可 以尝试“放宽”内存延时(提高那些数字)直到它变得稳定。如果所有这些都没用的话,主板可能还有用于提高芯片组电压的备用方案, 如果芯片组充分散热的话这可能会有帮助。如果完全没有帮助,那你可能需要在CPU或其它部件上更好的散热了(对MOSFETS - 挨着CPU插槽,控制电源的小芯片散热 - 可能有用并且是相当常见的)。如果那仍然没有用,或收效甚微的话,那就是在芯片或主板的极限下了。如果降低电压不影响稳定性的话 ,那么最可能的就是主板了。电压调节芯片组是一个可能性,但有点太高级了并且需要超出常规的更好散热。同样,对南桥以及北桥散热 可能会有帮助,或者可能改善稳定性。我知道在我的主板上,如果没有在南桥上装散热片就运行WinAMP/XMMS和UT2004 的话集成声卡就开始发出爆音(这出现在Windows和Linux中),无论FSB是多少。所以它不是一个糟糕的想法,但可能不 必要。它通常还让质保失效(比超频还严重 - 超频通常可以做得不留痕迹)。
  这里覆盖了基本的超频。更高级的超频通常包括给所有部件加上散热设备,电压调节主板甚至可能是电源,增加更多/更好的风扇或 是水冷或相变/层叠散热。

10.如果我的电脑不显示了(在打开时显示BIOS屏幕),我该怎么办?

  这取决于你拥有的主板。“失败恢复”方案是用来重置CMOS的,通常通过跳线放电完成。在主板手册中查找细节。如果超频太高 但BIOS设置保持完整无缺的话,新近的大多数发烧级主板有一个选项用来在降低的频率下进行显示,那么你可以进入BIOS并调低 到稳定运行的时钟速度。在某些主板上,这通过在打开电脑时按住Insert键来完成(通常必须是PS/2键盘)。如果电脑经过之 前的努力仍不显示的话,有些会自动降低频率。有时电脑不会冷启动(在按下电源按钮时显示)但在保持一会儿后会运行,那就重启。在 其它场合电脑会很好地冷启动,但不能热启动(重启)。那些都是不稳定的迹象,但如果你对这个稳定性感到满意并能够处理这个问题的 话,那么它通常不会引起大的问题。

11.什么限制了我的超频?
  通常RAM和CPU是唯一重要的限制因素,特别是在AMD系统中由于内存异步运行而固有的问题(参见下面的FSB章节)。R AM不得不运行在跟FSB相同的速度或是它的分频频率下。内存可以运行在比FSB高的速度下,而不仅仅是低于它。不过有了运行更 高延时/更高内存电压的选择,它变得越来越不像限制因素了,特别是因为新的平台(P4和A64)从异步运行中承受了更少的性能损 失。CPU已经变成了主要的限制因素。唯一处理无法运行得更快的CPU的方法就是加电压,不过超过最大核心电压会缩短芯片的寿命 (虽然超频也会这样),但充分的散热部分解决了这个问题。伴随着使用太高核心电压的另一个问题在P4平台上以SNDS,或者说是 Sudden Northwood Death Syndrome(突发性死亡综合症)的形式出现,使用高于1.7v的任何电压会导致处理器迅速而过早的报废,就算采用相变散热 也不行。然而,新的C核心芯片,即EE芯片,及Prescott芯片没有这个问题,至少范围不同。散热也能妨碍超频,因为太高的 温度会导致不稳定。但如果系统是稳定的话,那么温度通常不会太高。


12.现在我已经超频很多了,我该做什么?
  如果你想的话就运行一些基准测试。让Prime95(或是你选择强调的测试 - 完全视你而定)运行充分长的时间(通常24小时无故障就被认为系统是稳定的了)。

13.什么是FSB?
FSB(或是Front Side Bus,前端总线)是超频最容易和最常见的方法之一。FSB是CPU与系统其它部分连接的速度。它还影响内存时钟,那是内存运行 的速度。一般而言,对FSB和内存时钟两者来说越高等于越好。然而,在某些情况下这不成立。例如,让内存时钟比FSB运行得快根本不会有真正的帮助。同样,在Athlon XP系统上,让FSB运行在更高速度下而强制内存与FSB不同步(使用稍后将讨论的内存分频器)对性能的阻碍将比运行在较低FS B及同步内存下要严重得多。

14.为什么让PCI/AGP总线超规格运行会导致不稳定?
  
让PCI总线超规格运行导致不稳定主要是因为它强制具有非常严格容许偏差的部件运行在不同的频率下。PCI规格通常是规定 在33MHz下。有时它规定在33.3MHz下,我相信那是接近于真正的规格的。高PCI速度的主要受害者是硬盘控制器。
某些控制器卡具有比其它卡更高的容许偏差,那么能够运行在增加的速度下而没有显而易见的损害。然而,在大多数主板上的板载控制器(特别 是SATA控制器)对高PCI速度是极端敏感的,如果PCI总线运行在35MHz下就会有损害和数据丢失。大多数能够应付34M Hz,实际上超规格幅度小于1MHz(取决于主板怎样舍入到34MHz...例如,大多数主板可能会在134至137MHz之间 的任何FSB下汇报34MHz的PCI速度,实际的范围是从33.5MHz到34.25MHz,并且可能基于主板时钟频率上的变动而变化更大。在更高的FSB和更高的分频器下,范围可能会更大)。
声卡和其它集成的外围设备在PCI总线超规格运行时也受损害 。ATI显卡对高AGP速度比nVidia卡有小得多的容许偏差(直接关系到PCI速度)。记住,大多数Realtek LAN卡(基于PCI并占用扩展插槽的)被设定在从30到40MHz之间的任何频率下安全运转。

15.什么是倍频?
  倍频结合FSB来确定芯片的时钟速度。例如,12的倍频搭配200的FSB将提供2400MHz的时钟速度。像在上面超频章 节中说明的那样,有些CPU是锁倍频的而有些没有,就是说只有某些CPU允许倍频调节。如果拥有倍频调节,就能够用于要么在FS B受限制的主板上获得更高的时钟速度,要么在芯片受限制时获得更高的FSB。

16.什么是内存分频?
  内存分频确定了内存时钟速度对FSB的比率。2:1的FSB:RAM分频将得到100MHz的RAM时钟对200MHz的F SB。分频最常见的使用是让运行在250FSB的P4C系统搭配PC3200 RAM,使用5:4分频。在大多数Intel系统上还有4:3分频和3:2分频。Athlon系统在使用分频时不能像P4系统那 么有效地利用内存,正如上面FSB部分中说明的那样。内存分频应该只用于获得稳定性,而不是一时性起,因为就算在P4上它也损害 性能。如果系统没有采取内存分频都是稳定的话(或是如果内存电压提升能够解决问题的话),那就不要使用分频。

17.不同的内存延时意味着什么?
  CAS延时,有时也称为CL或CAS,是RAM必须等待直到它可以再次读取或写入的最小时钟数。很明显,这个数字越低越好。
  tRCD是内存中特殊行上的数据被读取/写入之前的延迟。这个数字也是越低越好。
  tRP主要是行预充电的时间。tRP是系统在向一行写入数据之后,在另一行被激活之前的等待时间。越低越好。
  tRAS是行被激活的最小时间。所以基本上tRAS是指行多少时间之内必须被开启。这个数字随着RAM设置,变化相当多。

18.不同的内存等级是指什么?(PC2100/PC2700/PC3200等等)
  等级直接是指能得到的最大带宽,而间接指内存时钟速度。例如,PC2100拥有2.1GB/S的最大传输速度,和133MH z的时钟速度。作为另一个例子的PC4000,具有4GB/S的理想传输速度和250MHz的时钟。
要从PCXXXX等级中获得 时钟速度,把等级除以16就行了。把速度等级乘上16就得到了带宽等级。

19.DDR XXX怎样表示实际的内存时钟速度?
  DDR XXX正好是实际时钟速度的两倍;也就是说,DDR 400是设定在200MHz下的。
  如果想要知道DDR XXX速度的PC-XXXX速度,把它乘上8就行了。



[ 本帖最后由 尉迟小乐 于 2007-5-3 17:43 编辑 ]
 
级别: 光盘初级
发帖
301
飞翔币
335
威望
48
飞扬币
1311
信誉值
0
只看该作者 1 发表于: 2007-05-03
引用

k8超频指南

话先说在前头,你只要适当的超频就可以了,如果超得很厉害那不叫超频,那叫破坏硬件!! 
讲超频之前先了解以下的计算方法和名称:
CPU的频率的计算如下:
前端总线 * 倍频 = 处理器速度
例如我的Athlon 64 3000+ s-939的速度是:200 * 9 = 1.8Ghz
前端总线(不过在K8不叫前端总线,而是HT,所以后面只讲HT)是随时都可以调的,但是倍频就没那么幸运了,Athlon64 只能说半锁,因为可以调比原先来的低的倍频,不像P4多数锁倍频,除了Athlon64 FX,FX系列的倍频没被锁住,所以超频大致上比较容易,但是价钱就非常贵(价钱跟P4EE差不多,但是比FX便宜)。

HT - 1x,2x,3x,4x,5x(预设4x)
HT故而名意就是HyperTransport,HyperTransport应用于内存控制器时,其实也就类似于传统的前端总线(FSB,Front Side Bus),因此对于将HyperTransport技术用于内存控制器的CPU来说,其HyperTransport的频率也就相当于前端总线的频率。
HyperTransport的计算公式如下:
记忆体频宽 * 倍数 = HyperTransport的速度
例如:DDR400(有效值200Mhz) * 4X = 800Mhz
如果当你的记忆体频宽超频至280Mhz,那么你的HyperTransport的速度为
280Mhz * 4x = 1120Mhz

这是非常夸张的速度,多数超频失败,所以解决方法有:
1. 把记忆体频宽同步换成异步。
2. HT的倍数换更小。例如把4x换成3x,280Mhz * 3x = 840Mhz,这样超频比较安全,而且速度不会而减低。


Cool'n'Quiet - Enable/Disable
Cool’n’Quiet功能就是可以视系统作业情况自动调节处理器的工作频率,如果散热器搭配测温器件,还可以自动调速风扇转 速,达到节能静音。如果只是在BIOS开启Cool'n'Quiet是不够的,所以要做以下步骤才可以真正打开Cool'n'Quiet
1.在BIOS把Cool'n'Quiet设为Enable(讲废话-_-||||)
2.进入Windows,在控制面板里双击“电源选项”。进入“电源选项 属性”后,下拉“电源 使用方案”选择“最少电源管理”。"
3.. 安装AMD Athlon64处理器驱动程式。下载网址:
http://www.amd.com/us-en/Processors/ProductInformation/0,,30_118,00.html
做以上步骤就可以用Cool'n'Quiet。
如果在BIOS没有看到Cool'n'Quiet可能是旧BIOS,你只须更新BIOS就有Cool'n'Quiet功能了。
注意!如果你在BIOS设定倍频,那Cool'n'Quiet那就失去效用。
超频有以下方法:
1. 只调整倍频
这种方法是最安全的,因为不会影响PCI,AGP或PCI-E的工作(详细解说过后再讲),虽然速度有所增加,但是如果没调HT 就等于说资料传输频宽没增加,所以只可以说还好。不是每个主板都可以支援,所以查看这个主板可不可以支援。
2. 只调整HT(前端总线)
这种方法是最普遍超频的方法,多数主板都支援调整HT,好处资料传输频宽增加,速度又增加,这方法是非常好的,但是你只要把HT 调高就等于把PCI/AGP/PCI-E的速度增加,正常速度为PCI 66Mhz/AGP 33Mhz,如果调太高可能SATA硬盘运作失败,因为SATA硬盘对PCI频宽很敏感,只要超过1Mhz就不可运作,所以要看你的主板是否可以锁PCI/AGP/PCI-E。
注意!假设你的主板不可以锁PCI/AGP/PCI-E就不可调太多。
3.两者都调整(倍频和HT)
我再说如果你可以调倍频才使用此方法,包括半锁的Athlon64.
这种方法是最多变化的,我举个例子,一个是200*9=1.8Ghz,另一个调法是225*8=1.8Ghz,虽然速度都一样,但是后者的HT调高,资料传输频宽比较快,所以后者是最好的。有时把倍频弄底一点,再把HT调高,就不止是速度调高而且资料传输频宽更快,所以看你怎么调了。
一步一步教你怎样超频:

请你先确定在BIOS设定把ClockSpectrum设定为Disable,这样才可以超频!
第一步:调整倍频
注意:此方法只用于可以调倍频的CPU,如是锁倍频的CPU就跳过此步骤。(Athlon64只是半锁!)
倍频超频的方法以加0.5x或1x(如果你的BIOS不支援0.5x的调法)的倍频来超频,然后用Prime95跑20分钟,如果超频失败就调回上次的倍频。
第二步:调整HT或前端总线(FSB)
在此步骤有两种方法,一种是只调前端总线,前端总线每次以3MHz到5MHz的前端总线来超频,然后做Prime95测试20分钟,如果没通过,那以每降1MHz前端总线然后再测试到通过。另一方法就是把倍频调低然后再把前端总线调高,跟上一步骤一样,自不过 再减低倍频。
第三步:调整Vcore(处理器电压)
在此步骤,处理器的最高温是你的参数,还有你要知道此处理器的工作电压,这是非常危险的设定,这个有关于你处理器的工作电压,如果调错工作电压可能会烧毁处理器。例如Athlon64 3000+ s-939的工作电压是1.4v,那就以加0.025v或0.05v的方法来加,设定完后再去Prime95测试20分钟,如果测试Prime95工作温度出于在在于60度至 70度,那你要做更好的散热工作或降低电压,不然你的处理器很快完蛋。如果你的米多那就买比较好的散热器或水冷系统,不然不要把 工作电压降低。
第四步:调整记忆体电压Vdimm
如果你一直测试失败那不代表你调FSB或Vcore太厉害,也可能你的记忆体不太稳才导致超频失败,你可以试试看把记忆体电压加高,一般记忆体的电压是2.6v,有些是2.7v,然后以0.1v调整,调到稳定为止,不过上限为2.85v或2.9v,除非你有非常变态的散热系统,不然你不要调到2.9v。
第五步:做测试
这是最后步骤,我们用测试软件来测试系统的稳定性,例如Prime95,3DMark03等等,以Prime95做测试,如果测试2小时都没问题的话,那我就恭喜你,你超频成功,要求苛刻的话就做24小时测试,24小时都通过的话,那你的超频几乎都没问题 ,可以长时间这样跑。
------------------------------------------------------- -------------------------------------------------------------
以下介绍几个工具给你们:
如果你觉得在BIOS里超频很麻烦,那我就介绍这款超频软件:ClockGen
ClockGen
ClockGen是CPUID出品的,它是一套超频软件,你可以在Windows界面超频,你只须调整你要的速度,再保存就好了 ,非常方便。
ClockGen是要看你的主板使用什么晶片主才下载,下载网址:
http://www.cpuid.org/clockgen.php
如果你要测试你超频稳不稳,SuperPI是不错的选择,但是要求苛刻那就用这个稳定测试软件,Prime95。
Prime95是一款著名的稳定性测试软件,它的“烤机”原理是通过CPU不断地进行梅森质数的运算,让CPU工作在大负荷下并借其考验系统稳定性。由于CPU计算梅森质数时的运算量特别大,因此这个测试软件可以发现其他测试程序无法发现的稳定性问题,不 少PC整机/OEM 制造商都用Prime95。你只须跑2小时就可以过关了
使用方法:
Prime95主界面,当Prime95启动时系统托盘里会同时出现Prime95的图标。要运行稳定性测试,可点击“选项(O ptions)”→“折磨CPU测试(Torture Test)”进入测试项目选择菜单。一般主要是测试“适当大量FFTs(large FFTs)”和“少量FFTs(Small FFTs)”两项。进行“适当大量FFTs”测试时,CPU的负载将达到最高,即便是具有超线程的P4处理器也不例外,而且还会 占用大量内存。 而“少量FFTs”则是纯CPU的测试,不会占用内存。选择好要测试的项目后,点击“确定”按钮即可开始测试。测试进行时系统托盘里的Prime95图标会由黄变红,表示测试正在进行。如果测试中途出错,图标就会变回黄色,同时在软件界面中显示出相应的信息。要手动停止测试,可点击“分析”→“停止”。
Win 95/98/ME下载网址:
http://mersenne.org/gimps/p95v238.zip
Win NT/2000/XP/2003下载网址:
ftp://mersenne.org/gimps/winnt235.zip
检视处理器信息工具程式 - CPU-Z
CPU-Z
CPU-Z是一套检视处理器的信息,你可以看到FSB、倍频、工作电压等等,是一个不可或缺的工具程式。
CPU-Z目前最新版本是1.28,下载网址:
http://www.cpuid.org/download/cpu-z-128.zip
如果此文章有问题或错误的话请告诉我,我会更正的,祝你们超频成功,愉快!
级别: 光盘初级
发帖
301
飞翔币
335
威望
48
飞扬币
1311
信誉值
0
只看该作者 2 发表于: 2007-05-03
引用

超频无止境 市售最能超处理器全曝光
  几年以前,超频的目的还是为了提高机器的整体性能,或者说,超频是为了省钱。不过到了今天,超频已经成为一种文化:厂商以超频为卖点推销产品;而消费者在选购时总会问问某某能超吗?在CPU的柜台上,更是屡屡可以发现“包超XXGHz”的CPU产品广告。那么在这样一个提倡超频的年代,我们应该如何把握自己的选择?
  而在PC中,最容易和超频联系到一起的当数CPU。所以我们将目光主要放在CPU上,而如何将手头的CPU合理的超频?本文将针对这个问题,详细阐述。
  
一,Pentium4篇
  Intel的产品品质出众,所以Intel制造的CPU通常可超的幅度最大。而拥有长管道技术的Pentium4在频率方面,提升最为容易。那么我们怎么才能把一块Pentium4发挥到极致呢?
  
1.挑选一块品质出色的CPU
  Intel的产品线非常丰富,因此选择CPU的时候要先根据自身的经济实力来挑选CPU。比如是选择主频为2.8GHz的Pentium4还是3.0甚至是3.2GHz的Pentium4?还是从花最小代价的角度看,媒体通常会推荐消费者购买2.8甚至是2.4GHz的Pentium4。但一定是价格最便宜的Pentium4最适合超频吗?试想一块2.8GHz的Pentium4 E,其倍频只有14x。如果外频提升到250MHz,那么其主频也只能达到3.5GHz。而Intel发布的最高主频的Pentium4已经达到了 3.8GHz。但250MHz的外频对于普通的865主板来说是很难承受的,只有采用875P或者大厂的865PE主板才能稳定的工作于250MHz外频下,但价格不菲。反之,如果使用较高频率的3.0E或者3.2E,凭借他们自身较高的倍频,只需较低的外频就能达到较高的主频,如此一来,因主板的因素而导致超频失败的可能性就会下降很多。
  
建议:在经济条件允许的前提下,挑选CPU的时候尽可能挑选倍频较高的产品,降低主板和内存的负担。
  
2.留意CPU表面的编号,选择整体品质出色的产品
  Intel将一块CPU的大部分信息刻在了Pentium4的IHS表面。如果是盒装产品,那么这些信息也可在CPU或者是盒子侧面的贴纸上找到:

用红线框出的部分是识别一块CPU可超性大不大的关键。上面一行是CPU的S-Spec号和封装地。S-Spec号是我们用来区别CPU的主要编号。每一组S-Spec号只代表一款特定主频,外频,缓存容量和核心版本的CPU。在Intel的编号系统中,不同的CPU肯定拥有不同的S-Spec号,但同时,因为销售地区,盒(散)装以及核心版本的不同,一款CPU可能拥有两组甚至是两组以上的S-Spec号。
  用S-Spec号来挑选Intel处理器的主要依据正是S-Spec号对应CPU的唯一性。决定一款CPU能不能超主要看其核心版本:一般的规律是,同样主频的CPU,核心版本越高,那么这个版本的CPU整体超频性能越强。随着CPU核心版本的升级,Intel的S-Spec号也会变化:
  核心版本与S-Spec号的关系(Pentium4 2.8GHz Prescott核心)

通过这张表我们可以看到,一款主频为2.8GHz的Prescott核心Pentium4竟然有这么多组S-Spec号。D0版核心的Pentium4E 的超频能力要比C0版的强的多,而E0又更上一层楼。如果你想找到一颗能超的CPU,那么必须首先从S-Spec号入手。
  紧接着S-Spec号的是CPU的封装地。常见的有MALAY(马来西亚),Philippines(菲律宾),Costa Rica(哥斯达黎加)以及China(中国)。在大陆市场销售的Pentium4主要是在MALAY封装的,后面三者出现的频率不高。根据经验,哥斯达黎加和菲律宾封装的CPU超频性能要好一点(当然这只是一种经验,并不代表马来西亚封装的CPU的体质就一定不好)。
  第二行是CPU的封装序列号。第一位代表封装地,既可以是字母也可以是数字,后面三位“415”是封装日期,意思是04年15周。 “A599”是制造所用晶元的编号。这种编号体制使得同一块晶元上切割下来的核心封装而成的一批CPU会具有同样的编号。拥有同样编号的CPU的超频极限是差不多的。
  建议:你可能会见到几颗编号完全一样的散装Pentium4(盒装的CPU的编号是唯一的),不要奇怪,还是根据S-Spec号来判断这块CPU是否值得购买。
以下是:SL79K的C0核心的Pentium4 2.8E

  
3.近期值得关注的Pentium4
  今年,Intel先后发布了D0和E0核心的Prescott Pentium4,超频能力有了长足的进步。Prescott核心的Pentium4的超频特点是加压对提升频率的影响不大。加之Prescott本身功耗较大,加压带来的发热增加非普通散热器所能解决。普通风冷条件下1.55-1.6v的电压可以看作是Pentium4的加压的上限。D0和E0核心Pentium4在默认电压下即能达到较高的频率,这也是我们推荐D0和E0核心的Pentium4处理器的原因。
  由于Intel放弃了4GHz的计划,所以整个Pentium4的Roadmap发生了改变。E0核心原本只用于LGA775接口的处理器上,现在延伸到了Socket478接口的处理器。
  Socket478接口的Pentium4目前有C0,D0和E0三种核心。目前国内市场上销售的以前面两种为主,但受到渠道和消费习惯的不同,C0和D0所占的比例差异很大:北京市场上D0的版本为主,而在上海,盒装的C0核心处理器占据了不小的比例。E0核心的处理器已经出现在日本市场,国内也已经有少批量的散装产品上市(主要是3.0E)。
  LGA775接口的处理器比较统一:D0核心占据绝对优势。因为LGA775的版本号便是从D0起跳的,而且国内接受LGA775的处理器程度不尽人意,导致仍然有不少的D0核心P4留在经销商手中。
   Pentium4 2.26GHz(SL7D7)

这款CPU是采用Prescott核心的最低频产品,不过这款CPU不支持HT技术,所以我们很难看到它以盒装的形式出现。它的核心版本仍然是较早的C0 版本,但我们相信超上3GHz是不成问题的,用一块Celeron的价格买到一块性能与Northwood核心Pentium4近似的CPU,何乐而不为呢?
   Pentium4 2.8GHz(SL7D8)

推荐这款CPU完全依靠它在Super Pi 1M成绩排行榜中的出色表现。目前Intel阵营中的1M的记录是由超频到5.575G的Pentium4 2.8A保持的。它的编号便是SL7D8。前十名中有八条是由Pentium4创造的,而在这八条记录中又有6条是由SL7D8的Pentium4 2.8A创造的。SL7D8堪称是C0核心的极品。不过由于其推出的时间较早,所以现在要找到它可能要费点周折。
   Pentium4 2.8GHz(SL7J4)

我们再次像大家推荐Pentium4 2.8A,只是这次其核心版本为D0。推荐Pentium4 2.8A是因为它的倍频达到了21x,这样较低的外频便能达到很高的主频。但是使用P4C800的用户需要注意,133MHz外频的Prescott核心的CPU(包括Pentium4和Celeron D)会在这块主板上遇到内存分频的BUG,只能使用4:5的设置。如果你选择了这类CPU,那么建议你不要选择P4C800。
   Pentium4 2.8GHz(SL7PK)

又是Pentium4 2.8GHz!这次是品质和超频性能更好的E0核心,显然E0核心的Pentium4的超频目标是4GHz。这也是最新的Pentium4,所以大家可以特别留意市场上是否已经有这位未来的“超频明星”。
   Pentium4 3.0E(SL7PM)

3.0E拥有15x的倍频和合理的价格。E0核心的Pentium4 3.0E上250MHz的外频是件轻松加愉快的事。主流产品使得它非常容易就能买到。如果是散片的话,那么可以跟老板讲讲是否能挑选几块进行筛选。
  
4.主板,电源和内存
  Pentium4,特别是800MHz外频的Pentium4超频对主板的要求是很高的:首先是主板供电是否充足:
   CPU主频和电流的对照表


建议:在Socket478接口的Pentium4中,3.2E有两个版本,他们的电流消耗分别为78A和91A。Intel使用了一个针脚在定义其所使用的“平台配置要求(PRB)”,LGA775的Pentium4中,P4 550(3.4GHz)也有同样的两个版本,电流分别为78A和119A
  可以看到,最新的Pentium4的功耗在继续增长,最新的Pentium4 570J(E0)核心的最大核心电流达到了惊人的119A!CPU的最大功耗大概在150W左右。可见CPU是一只多么大的“电老虎”。由于 Socket478架构主板设计时的冗余电力不足,Intel没有继续发布更高主频的Socket478处理器。
  列出这张表我们可以看到,超频之后的Pentium4的功耗对主板的考验是艰巨的。相对来说,875P主板更适合Pentium4主板的超频,因为他们的定位使得主板厂商可以留下较大的电力冗余。
  
建议:在选购主板的时候,三相或者是四相供电是必需的,但是有些厂商利用消费者的这种心理,采用四相供电,但是每相均使用较小的MOFSET管,这样反而不利于稳定的超频。所以除了看CPU供电的相数,更要注重使用的MOFSET管是否“够劲”。
  电源在超频的时候特别重要,有时候超频不稳定并不一定是CPU的错。举个例子,笔者自己超频的时候,将一块C0核心的Pentium4 2.8E超到3.33GHz之后便再也无法提升。这时使用的是额定功率是300W的航嘉“天籁之音”(12V的输出为15A),后来换了航嘉的磐石500 (12V输出达到20A)之后成功的将CPU稳定工作在3.5GHz上。Pentium4的电流主要靠电源的12V输出,所以选择超频用的电源要注意 12V的输出是否足够。依据笔者自己的电源,3.5G以上的频率需要电源的12V的输出至少达到20A。
  
建议:电源的12V输出已经成为衡量一款电源的重要指标,相对来说,使用双12路输出的电源会在超频的时候获得更为稳定的电流输出,不过价格不低。
  内存对于Pentium4超频并不是一个大问题,因为主板通常提供了5:4的分频设置,除非CPU的外频超过了250MHz,否则大部分内存都可以工作在额定的频率范围内。但是如果要追求极致的性能,那么就只能购买更高规格的内存了。
  
建议: 目前最强的颗粒是SAMSUNG的TCCD颗粒,海盗旗,OCZ。Muskin等著名厂商均推出了采用该颗粒的内存。
  
二,Celeron D篇
  相比Pentium4售价的高高在上,Celeron D的价格平易近人。由于Celeron D自身与Pentium4存在着较大的差距,所以在Celeron D超频之后极少用于各种测试成绩的排行,而“自我挑战”的更多。对于国内的玩家来说,超频Celeron D的目的主要是使用。从这个角度来看,Celeron D的超频应当比Pentium4理性的多,至少我们不应在超频Celeron D花太多的钱。
  Celeron D虽然也有Socket478和LGA775两种接口,但核心版本分布的规律和Pentium4并不完全一致:
  Socket478接口的Celeron D有C0,D0,E0核心,而LGA775完全是E0的天下。从可超的角度看,D0核心的Celeron D的整体超频能力要比C0核心强的多,默认电压下即能提升30%-40%,E0核心的目标是冲击3.6G以上的高频。
  困扰Celeron D超频的主要问题是散热:同频下Celeron D的工作温度要比Pentium4 E高10度左右,这使得Celeron D对散热器的要求比Pentium4 E还要高。但Celeron D的低价决定了为其搭配的散热器不会太高档。很可能会出现散热器的价格比CPU的价格还要高的局面,但这种结局有多少人愿意接受?
  Celeron D仍然采用了Prescott核心,由于缓存减小到了256K,从理论上说,超频性能应当比Pentium4更好,不过在实际中,Celeron D的这点优势并没有发挥出来,当然这与国外的超频爱好者并不钟情Celeron D(太便宜了且性能不够好)有关。所以在Celeron D超频上,国内的超频者完全有大展拳脚的空间。
  
如何挑选能超的Celeron D?
  挑选Celeron D仍然要看是什么核心,而识别核心就要看编号,就是S-Spec号。根据CPU表面的S-Spec号我们就可以判定这款Celeron D的核心版本。那么Socket478的Celeron D应该选择哪些主频的产品呢?在选择可超的Celeron D之前,我们必须明确一个前提:即我们的Celeron D是拿来用的,而不是运行CPU-Z的截图或者是运行Super Pi就能了事的。这样我们就必须考虑一下目前风冷能够稳定运行的极限。看看Intel的Roadmap就可以知道这一稳定的极限大约在 3.4-3.5G左右(目前P4的最高极限仅为3.8G,而且能达到这一频率的P4也是凤毛麟角),如果采用Celeron D 320(133x18),那么外频提升到200MHz便已经达到了能够稳定的极限,倍频越高,所需要的外频就越低,对内存和主板的要求相应降低,不过低外频会抵消主频增长带来的部分性能提升。综合这两点,我们觉得Celeron D 320和Celeron D 325最为适宜。
  
1.Socket478接口
  Socket478接口的Celeron D有三种核心:C0,D0和E0。后两者的整体超频能力最强。目前D0核心的Celeron D在市场上最为常见。E0核心的Celeron D已经小规模的上市,以散片为主。
   推荐的Socket478接口的Celeron D

Intel最近发布了一系列主频为2.26GHz的Prescott核心处理器,Celeron D 315便是其中之一。由于主频很低,且采用的是超频性能极佳的D0核心,所以这款Celeron D应当会有很高的超频幅度。中关村的一些CPU经销商打出了包超3.4G的旗号。对于D0核心来说,3.4G只是小菜一叠,不过考虑到Celeron D 315的价格很低,我们强烈推荐这款Celeron D 315。唯一需要注意的是,这款产品是散装产品,优质的散热器必不可少。

这款CPU完全有可能成为新的超频明星,因为这款CPU使用了Intel最新的E0核心而主频只有2.26GHz。SL8AW的Celeron D是盒装产品,因此在国内上市还需要一段时间。Celeron D 315J本身的性能不值一提,吸引我们的是它最新的制程和很大的超频想象空间。

这款Celeron D 320问世已经有一段时间了,超频性能的强劲已经得到了很多爱好者的认同。200MHz外频时Celeron D 320可以达到3.6GHz的主频。而且达到这一频率的CPU不在少数。平心而论,3.6GHz下的Celeron D的性能已经能够和Pentium4 3.0E一拼了,价格却只有后者的40%不到。如果你发现了这款Celeron D,不要错过。

这款Celeron D是最早上市的Celeron D之一,倍频为19x。笔者自己仍然在使用这款CPU。它的超频性能也十分强劲:1.325v(P4C800所能提供的最低电压)下运行在额定频率下,加压到1.375v外频提升到166,主频到达3.15GHz。而在1.4v的电压下便达到了3.4GHz的主频,继续加压到1.45v,CPU冲上了 190外频,主频达到3.61GHz。

SL7ND编号的Celeron D既有盒装版本,也有散装版本,除了一个高质量的散热器,两者是一样的。不过依笔者自己的经验,盒装散热器并不适合3.4GHz以上的频率。

Celeron终于也突破了3GHz的大关,并且Intel仍然没有放弃Socket478接口。这两款Celeron D都采用了最新的E0核心。倍频高达23x的3.06GHz只需很小幅度的外频提升便能获得3.4GHz以上的频率。而且从心里的角度看,一块由 3.06G超来的Celeron D肯定要比2.26GHz超来的用着心里踏实。但目前我们觉得购买345的时机还未成熟,主要是价格因素。日本上市的345的售价折合人民币在1000元左右。我们期望的显然是700元或者更低的Celeron D 345。3.06GHz的Celeron D也很有可能是Socket478 Celeron D的绝唱。
  
2.LGA775接口的Celeron D
  只有LGA775接口的Pentium4是不够的,因为Pentium4太贵了。可以说,只有LGA775的Celeron D大量铺货,LGA775平台才能看到生存和发展的曙光。到了2004年第四季度,LGA775的Celeron D终于开始大量上市了。
  LGA775 Celeron D从E0核心起跳,超频能力不容小觑;并且选择LGA775的Celeron D不会受到915/925平台的超频限制,因为超越200MHz外频对大多数Celeron D来说并不现实,即使是某些极品Celeron D,220MHz的外频待遇也算是绰绰有余了(915/925的超频限制为10%)。

这是目前能找到的最低频的采用E0核心的LGA775 Celeron D,配合915主板可以搭建一套成本合理,又不失超频潜力的系统。

这两款Celeron D中,SL7TL既有散装产品,也有盒装产品。SL7VR则是盒装产品的编号。
  
三,Intel CPU超频的注意点
  同一编号CPU的个体超频能力差异
  Intel的S-Spec号是唯一的:即一个S-Spec号只对应一款特定的CPU,所以知道S-Spec号便能知道这款CPU的主频,外频,核心版本。不过,在一个S-Spec编号下,会有成千上万颗同样的CPU,它们之间的个体超频能力差异是比较大的。所以不能武断的认定某个S- Spec号的CPU就比另一个S-Spec号的CPU好超。比如C0核心的Celeron D 320就诞生过风冷超频达到4.4GHz的极品。挑选能超频的CPU在很大程度上需要运气。如果能确定CPU的封装日期及编号,那么挑到极品的概率就会大很多(同一晶元切割出来的产品体质差异不大,超频极限近似)。但问题是从常见的CPU检测软件上我们是无法查出CPU的晶元切割号和日期的。
  正因为有这样的不确定因素,我们在挑选CPU的时候不得不考虑个体差异。E0,D0,C0版本之间的差异我们只能用统计学的概念来反应:即如果设定一个较高的可以达到的主频,那么从E0核心的CPU中挑到的概率要比从C0核心中挑大得多。所以,我们推荐的CPU的S-Spec号,只是给大家一个比较大的“马场”,在这个“马场”里,既有“黑马”,也有“普通马”,但是在这个场子里发现黑马的几率很大。
  功耗,发热及散热器
  Prescott核心的CPU的最大弱点是发热量大。这一点在Celeron D上体现的最明显。同频下Prescott核心要比Northwood高5-8度左右,而Celeron D又要比Pentium4 E高10度左右。无论是超频P4E或者是Celeron D,好的散热器都是必需的。最好的搭配是纯铜加热管的组合,配以一定口径和风量的风扇。对于使用Celeron D的用户,必须要接受散热器可能比CPU更昂贵这样一个事实。
  
四,Socket939 Athlon64的超频
这个内容可以参看
“1. 玩转超频!Athlon64处理器最详细超频指南手册”
的链接。

级别: 光盘初级
发帖
301
飞翔币
335
威望
48
飞扬币
1311
信誉值
0
只看该作者 3 发表于: 2007-05-03
引用

超频的高级知识
本文主要介绍超频的一些常识和超频引起的相关问题,但不必因此而害怕超频,第一篇已经讲明了,超频非常安全
中央处理器(CPU)从本质上说是信号处理器,将来自键盘、硬盘或者其它设备的信号由输入针脚送至CPU核心,经过指定变换处理,转换成所需信号,再由输出针脚送至内存,显卡或其它设备。
CPU处理信号的快慢,即CPU性能的高低一直以来是人们关注的焦点,可以说CPU的发展史实际上也是一部CPU的性能增长史。根据CPU性能=IPC(每时钟周期执行的指令数)×频率(MHz)的公式,单独提升IPC、主频,或同时提升两者都可使处理器的性能得以提升。因此CPU的内部架构和运行频率一直都是中央处理器的重要特征。对于消费者来说,无法改变CPU的内部结构设计以提升IPC,因此提高CPU的运行频率就成了人们获得额外性能的唯一方法。这也就是超频行为的由来和出现的必然性原因。
最早的超频记录为Amiga 500的Motorola芯片从9MHz超到12MHz,英特尔80286从8MHz超到12MHz 。但那时的超频行为是个别技术高手才能做的事情,需要用烙铁更换主板上的晶振来改变频率。真正超频作为一种大众行为开始普及—— 几乎人人可做,Intel公司于1998年推出的赛扬300A处理器功不可没。这款可以轻松将主频和性能提升50%的处理器成为超频史上经典中的经典,也将超频和CPU紧紧联系再一起。
超频 并非仅仅为了性能
此后,超频不仅仅成为一种获得提升性能的有效方法,也成为大众玩家竞相为之的时尚行动。何种产品好超,可以超到多少等等问题开始各大论坛上的热门话题,甚至于为什么无法超频的问题成为电脑医院的长期客户。相互攀比的结果进一步刺激了超频行为,进而开始产生 各类成绩的排行榜,比如CPU超频幅度排行、SuperPI 百万位成绩排行 和3DMark 成绩排行榜等等。还出现了一些以超频为宗旨,企图或者已经混迹于各类排行榜的电脑玩家。超频行为也成为一部分人满足心理需求的重 要手段。
由超频行为逐渐聚集起的庞大消费群体所引发的需求也渐渐衍生出为超频服务的技术、产品和行业。为超频而生的硬件和软件层出不穷, 极品CPU 、超频主板、散热器、导热材料、制冷设备、测温设备、自动手动超频软件、稳定测试软件,性能测试软件等等等等。而相应产品所造就 的经典也应运而生,Barton2500+、CIII 1.0、升技NF7、磐正8RDA3+、Alpha8045、SuperPI、SpeedFan、Prime95等等早早成就英名。相应的软硬件使用教程和经验交流更是纷纷印刷成册,摆上柜台。CPU、主板、内存、散热器等等产品的测试中,超频几乎成了各网站不可缺少的部分,俨然已经成为人们选择产品的一项重要标准。
时至今日,超频已经不仅仅是一种单纯的个人爱好,从它成为一种大众娱乐行为的开始,就注定会要成为商业行为的下一个占领地。超频不但成为硬件产品引人关注的卖点,也成为硬件厂商以超频极限之高来显示自己技术实力的手段。更重要的是,超频给商家带来了更多的软硬件消费和心理消费的市场空间。消费者从超频中获得实惠,选择自认为超值的产品。而生产厂家则以超频为市场出售更多的产品赚取利润、建立品牌。而媒体的评测也有更多内容可写,最终引来更多的人气和收入。在电脑市场的需求、供给和引导的市场环节中,超频带来的效应可谓皆大欢喜,最终在一种良性循环中蔚然成风。
超频 怎样才算成功?
说了这么多超频的好处,反而让人搞不清楚了什么是超频。简单的说,超频是一种行为,人为的使集成电路以超过额定工作范围的频率运 行。除了CPU以外、内存芯片、显卡芯片、硬盘芯片、主板芯片等等都可以超频使用。为了方便说明,本文仅以CPU为例详细介绍有关超频的一些问题。
那么怎样才能算是超频成功呢?这个问题因人而异。确切的说,是根据超频者的需求不同而不同。有部分人超频是为了探明CPU在某种极限条件下能够运行的最高频率,或者为了追求一个前所未有的极限数字。对他们而言,CPU并不需要在这种条件下工作太久,也不用去完成很苛刻的工作任务。哪怕CPU只能正常工作几分钟,能够进入WINDOWS系统正确显示当前运行的频率,甚至于仅仅能够点亮系统在BIOS自检画面中出现一个期待的频率数字,对于他们来说,都算是超频成功了。
但是对于大多数人来说,没人愿意在玩游戏正投入的时候因为死机而中途退出;也没人愿意在图形渲染到一大半的时候因为运算出错而不 得不重新开始;更没人愿意正要对网恋的MM 倾诉表白的时候因为硬件烧毁而错失机会。因此,能让处理器长期稳定运行而不影响到工作的正常完成是超频成功的先决条件,即人们常 说的”稳定压倒一切”。对于以应用为主要目的的人来说,超频不是一种必须行为,一切影响到实际使用的超频行为也都是不成功的。
超频失败通常表现为以下几种现象:蓝屏,非法操作,运算出错,窗口无端关闭,CPU占用率过高,程序无响应,画面定格,黑屏,自动重启,无法开机等等。
有的人会问:我超频以后运行了SuperPI和3Dmark 等测试软件没有任何问题,但是玩游戏久了会死机,这算是超频成功吗?其实这是典型的一种不成功的表现,因为它没有满足长期稳定这 个条件,并且影响到正常使用。测试软件一般运行的时间比较短,大多在 10 分钟之内,通过测试只代表能在短时间内稳定工作,并不意味着超频成功。而这种失败大多是因为散热不好热量逐渐积累而最终温度过高 。
相反,有人会问:我超频以后无法通过各种测试,但是我平常只用来打字听音乐,并且没有出现任何问题。这样算是超频成功吗?尽管打 字听音乐可能并不需要去超频就能很好的完成,但是我不能不说,恭喜你超频成功。
也就是说,超频是否成功,并不是以通过测试程序为标准,而是以自己的正常使用为标准。超频的目的是为应用服务,而不是为测试服务 。很多人对这种说法并不赞同,他们在追求的是一种绝对稳定。对于没有通过他们认为的严格测试的超频行为十分不齿。在这里我想说的 是,在Tom’shardwear里进行的连续数天超长超负荷稳定测试的存在,也许会让更多的人对你所谓的“稳定”超频而不齿。稳定没有绝对,只有相对。甚至于说,超频是一种唯心的行为,你真的认为成功了,它就成功了。
超频后果一:CPU功耗增加
现在所有CPU的芯片都是由CMOS(互补型金属氧化物半导体)工艺制成。CMOS电路的动态功耗计算公式如下:
P=C×(V×V)×f
C是电容负载,V是电源电压,f则是开关频率。
因为超频带来的CPU频率的增加,会造成动态功耗随频率成正比增长。而在超频的过程中,为了让CPU能够工作在更高频率上,常见的手段之一就是加电压。而这更加快了功耗增长的速度。
假设一块额定频率为1GHz、额定电压为1.5V的CPU其动态功耗为P0 。经过超频以后,工作电压加压到1.65V,稳定运行在 1.3GHz ,此时其动态功耗为P1。因为CPU制成以后,其电容值C也就基本固定,可以看作常量,也就是说超频前后的电容值C相等。
可以得到:  P0 = 1.5 ×1.5×1 ×C = 2.25C (W)
      P1 = 1.65×1.65×1.3×C = 3.54C (W)
两式相除得到:  P1/P0 = 3.54C / 2.25C = 1.573 
此式的意义是,这款超频后的CPU较未超频时,其动态功耗增加了57.3% ,因为对CMOS电路来说,静态功耗相对于动态功耗较小。因此其动态功耗的增长率近似为CPU总功耗的增长率。也就是说假设原来的CPU额定功率仅为60W,经加压超频后此时也将达到近95W ! 如果不更换更好的散热设备,将不可避免的引起CPU工作温度的上升。当处理器温度超过最大允许值,轻则无法正常工作,严重则导致CPU烧毁。

超频后果二:电迁徙
在前些年在提及超频后果的时候,经常会提起电迁徙(有人称为电子迁移)造成的危害。在半导体制造业中,最早的互连金属是铝,而且 现在它也是硅片制造业中最普通的互连金属。然而铝有着众所周知的由电迁徙引起的可靠性问题。
由于传输电流的电子将动量转移,会引起铝原子在导体中发生位移。在大电流密度的情况下,电子不断对铝原子进行冲击,造成铝原子逐渐移动而造成导体自身的不断损耗。在导体中,当过多的铝原子被冲击脱离原来的位置,在相应的位置就会产生坑洼和空洞。轻则造成某部分导线变细变薄而电阻增大,严重的会引起断路。而在导线的另一些部分则会产生铝原子堆积,形成一些小丘,如果堆积过多会造成导线于相邻导线之间发生连接,引起短路。不论集成电路内部断路还是短路,其后果都是灾难性的。电迁徙或许是集成电路中最广泛研究的 失效机制问题之一。
电迁徙造成导线损耗
超频的结果会使通过导线的电流增大,引起的功耗增加也会使芯片温度上升。而电流和温度的增加都会使芯片更容易产生电迁徙,从而对 集成电路造成不可逆的损伤。因此长期过度超频可能会造成CPU的永久报废。
曾经有人这样反映:CPU超频到某个频率后,经过近一年的使用一直都很稳定。但是后来有一天就发现了CPU已经无法在这个频率上继续稳定工作。造成这种现象的原因,很可能是过度超频而散热措施不好,尽管CPU体质不错,在较高的温度下也能超到一个较高的频率。但是恶劣的工作环境和超负荷的工作让CPU内部发生严重的电迁徙。虽然没有造成短路或者断路,但是导线已经严重受到损伤,导线电阻R增大,最终引起布线延时RC(和布线电阻和布线电容有关)增加,导致时序错乱影响CPU正常工作。
一方面CPU集成的晶体管密度的不断提升,造成芯片中的导线密度不断增加,导线宽度和间距不断减小;另一方面CPU频率不断提升,功率逐渐加大而电压却在减小。CPU 运作需要更细的导线去承载更大的电流,铝互连的应用日益受到挑战。因此更低电阻的铜互连将在集成电路的设计和制造中逐步取代原有 的铝工艺。
很重要的一点是,铜具有良好的抗电迁徙的特性,几乎不需要考虑电迁徙问题。而目前市面上出售的CPU基本都已采用铜互连工艺。在AMD的Athlon(Thunderbird核心)和Intel的P4(NorthWood核心)发布以后的CPU都采用了铜互连技术,因此大多数人可以不必再为电迁徙而过于担心。
超频后果三:信号变差
前面说过,CPU是信号处理器,主要功能是对数字信号进行处理,其主要工作单元为由晶体管组成的门电路。下图是CMOS集成电路中的一个最基本电路——反相器,其它复杂的CMOS集成电路大多是由反相器单元组合而成。
理论上,CMOS门电路输出的数字信号(也是下一级门电路的输入信号)理想波形的上、下沿都是严格垂直的,从高电平跳变到低电平是突变的,不需要时间。
但是,实际上任何实物集成电路最终的性能都不可能完全达到理论指标。CMOS门电路输出波形也不是严格理论上的”方波”,在电压跳变的过程中,不但输出电压不是严格垂直,而且还需要耗费一定的时间。
Δt是指从高电平到低电平所需要的时间。这是因为CMOS 门电路中几乎无处不在的寄生电容和寄生电阻。而电容器件最重要的一个特性就是,不允许电容器两端的电压突变,而必须有个上升或者 下降的过程。只要有寄生电容的存在,Δt的存在就不可避免。通常,寄生电容的主要有以下几种:1)作为输出的晶体管的结电容;2)作为上级负载的下一级输入的晶体管的结电容;3)传输导线之间和晶体管之间的电容。
寄生电阻和寄生电容越小,高低电平的转换时间Δt 在整个信号中占据的百分比越小,实际输出的波形也就越接近于理想波形,集成电路的电气性能就更优秀。它们只能通过制造工艺的提高 去减小,而不可能完全消失。高k栅介质(High K gate Dielectric)、SOI工艺绝缘体上硅芯片技术(Silicon On Insulator)、“Low-k”低介电常数绝缘体技术等技术都是为了减小CPU中寄生电容采用的方法,而铜互连则有效减小了CPU 中寄生电阻。然而不容乐观的是,随着集成密度的提高,线宽越来越窄,导线之间和晶体管之间的距离越来越近,晶体管栅极层厚度越来 越薄,这几年CPU寄生电容和电阻的增加已经成为CPU制造技术中最难又最亟待解决的问题。
超频的CPU会使信号波形变的更差。因为CPU成品以后,其电容和电阻值都为常数,晶体管的各项参数也已经固定。在信号电压值不变的情况下, 信号高低电平的跳变所需要的时间也不变。但是频率的提高会使信号宽度 (占用的时间)变短,最终造成波形进一步恶化。
可以看见,超频以后的信号更加“非理想化”,电平电压不变的时间ΔT 逐渐减小,给信号的辨认造成困难。当频率增加过高.门电路还未达到最高电平和最低电平的电压要求值就开始“跳变”。波形严重失真 ,并且可能造成信号达不到下一级门电路的触发电压而使整个CPU无法工作。
通常,这种过度超频会造成电脑根本无法启动、黑屏等故障。
超频后果四:抗干扰能力减弱
对于大多数超频使用者来说,会有一个理智超频的过程,所以很少会超频到电脑无法启动或者黑屏,更常见的超频后果是造成系统不稳定 。CPU在工作过程中死机,重新启动,或者运算出错等等都是不稳定的表现。
既然能够开机工作,说明至少信号波形还没有达到下级电路无法识别的地步,为什么不能够稳定运行呢?这就牵扯到抗干扰能力的问题。
如果CPU在超频以后能够顺利启动,如果在没有外界的干扰,那么做好散热以后,它就能稳定工作。但是CPU是工作在一个不断变化的环境中,有很多来自于外界电子噪声的影响。CPU在超频以后,更高频的信号周期时间更短,超频之前影响不大的干扰信号,在CPU工作在更高频率的时候,可能会变成CPU无法正常工作的罪魁祸首。
可以看到,超频以后的有用信号(红)由于频率高,周期短,有效高电平时间短,在受到干扰以后,造成有用信号整体电压下降,干扰信号(蓝色)与原信号叠加的波形,无法达到要求电压,从而造成下级门电路无法识别信号,CPU无法继续正常工作。
而未超频的信号(绿色),和干扰信号(蓝色)叠加以后,虽然前半段有用信号整体电压下降,但是 后半部分不受影响,仍然能够达到高电平要求电压。尽管波形变化较大,但对于数字信号处理来说,达到高电平电压已经能够触发下级门 电路,对于CPU的使用不会有太大影响。
由此可见,原先并无大碍的干扰却可能导致超频的CPU在使用中罢工,所以说超频造成了CPU抗干扰能力的下降。
为了让超频的CPU 能稳定工作,必须尽量减少干扰源。最常见的来源有:大气中的天电、驱动电动机等电气设备或器件及由传感检测系统接收到的输入中混同于信号中的机、电、磁、光和声及电网波动的干扰等等。因此,在信号处理中,伴随信号一定存在噪声,不可能获得没有噪声的“纯净 ”信号。但是,只要保证信号比噪声强度大得多,信号的处理、分析和识别就不会 受到显著的影响。使用做工和用料更好的内存、主板和电源,不仅能够更少的吸收外界杂讯,也能确保CPU 输入和输出信号更规则、更纯净。以主板为例,完整的滤波电路、优质的供电稳压电路、合理的走线和布局、良好的散热措施等等,都是 一块设计优秀的主板必不可少的件条件,最终都是为了能给CPU提供稳定的工作环境服务。而干扰问题, 其实对于本身更高频的CPU也是如此,频率越高的处理器对干扰信号越敏感。LGA775接口的CPU正是为了避免针脚接受外界干扰信号而采用触点设计。
超频后果五:制造干扰
工作在高频率的时候,CPU 、主板等等配件上的导线和元件不仅是干扰信号的接收者,同样也是干扰信号的发射者。存在电流环路的导线就会有辐射产生,简单的电 路电流环路发出的辐射发射可用如下等式描述:
E(μV/m)=1.316×A×I×F2/D×S
E——电场(μV/m);
A——环路面积(cm2);
I——环路电流(A);
F——频率(MHz);
D——分隔距离(m);
S——屏蔽比率。
从这个关系可以看出,辐射的电场强度(E)以频率的平方增加。同样CPU经过超频以后,其辐射电场强度(电子噪声)会以频率提高速度的平方增加。
另外,CPU超频的直接结果是功耗增加,温度升高。大多数半导体器件,包括CPU 内部晶体管对温度相当敏感,温度升高会使器件热噪声指数倍增加,性能变差。在超频当中,最常使用的手段之一就是降温,为的就是减 少电子器件的热噪声。当使用干冰或液氮制冷的时候,CPU工作在零下上百度的环境中,最大限度的减少了晶体管热噪而使得极限频率得以实现。在CPU 超频过程中,很有趣的现象就是,当温度越高,漏电流就越大;反过来又使温度更高,工作状态会急剧恶化;这是典型的恶性循环。因此 温度造成的影响会受到人们极大重视。
其次,超频后CPU对电流的需求更大,因为CPU供电电路和主机电源的动态电阻影响,会造成最终CPU和其它电脑配件两端电压的下降。另外, CPU电流的急剧变化也会造成供电电压的跳变,产生突变信号干扰。也正因为以上原因,很多CPU超频后出错或死机,大多总是在任务最繁重、对电流需求最大的时候。
加电压也是超频中常见手段之一。加电压不但有利于提高信噪比(S/N = 信号电压/噪声电压) ,而且也会在一定程度补偿因为大电流需求造成的电压下降。但是常常会遇见的问题是,当电压增加到一定程度以后,再加电压就没用了 。这是因为加电压会让CPU温度快速增加,当热噪声带来的负面影响大于电压增长带来的好处的时候,再加电压就不管用了。
在这里再提一个和电压有关的超频话题——降压超频。很多人提到过一个问题,降压超频会不会造成CPU损坏? 实际上,更低的工作电压不但是人们一直追求的结果,也是制造工艺提高所带来的必然后果。往往都是制造工艺更好的CPU才能工作在更低的电压下,这也是移动版的CPU会比桌面版的成品率低的原因,也是移动版CPU价格昂贵的主要原因之一(还一个主要原因是规模效应)。但是,从来没有见过intel或者AMD宣称过移动版CPU的寿命会比桌面版的低,也从来没有媒体曝光过低压版CPU更容易损坏。
通常CMOS 最高允许工作电压是为了保障集成电路不会因为击穿或过热而烧毁,而最低允许工作电压的意义是为了保障集成电路能够正常运行。事实 上,对于CPU内的电子元件来说, 不论是二极管,三极管,电阻,电容等等, 两端加的电压比额定电压小是绝对不会损伤这些器件的。唯一需要考虑的是他们是否能够得到足够的电压和电流去正常工作。只要能够满 足降压以后CPU能够稳定运行,那么就不会对其造成额外的硬件损伤。相反,更低的温度反而有利于寿命的延长。
超频 适可而止最重要
作为个人如何对待超频行为同样也是因人而异。有的人从来没有进行过超频,出于一种对新事物的好奇和尝试,至少对他们来说是很有意义的;有的人则将超频当成深入了解计算机的途径,以兴趣为指导去获得更多的硬件知识;有的人则将超频作为一个动手动脑的锻炼机会,运用用自己的知识和动手能力去加强协调能力;有的人则是将超频作为一种自我挑战,利于现有的条件或者去创造条件,最大限度的发挥自己的才能去让计算机工作在最有效率的状态。不管是对他们自己,还是对硬件,他们的态度都是:物尽其用……也许有多少种人,就会有多少种对待超频的态度。
需要注意的问题是,并不是每种态度都是正确、必要的,超频应该适可而止。不是每个人都有大量的时间、精力和金钱来投入到超频行为中。至少不要为了超频严重影响了学习和工作的积极性,甚至引起经济损失而引发其它问题。超频也要讲究方法,需要一定的经验和理论指导。最好不要盲目进行或者无限制无常识的去超频,暴敛天物和浪费资源是可耻的。
级别: 光盘中级
发帖
1140
飞翔币
335
威望
303
飞扬币
8460
信誉值
0
只看该作者 4 发表于: 2007-05-03
好帖.认真看,琢磨琢磨. 好东西慢慢消化
谢谢楼住费心整理.
级别: 光盘见习
发帖
7
飞翔币
335
威望
13
飞扬币
1449
信誉值
0
只看该作者 5 发表于: 2007-05-04
真的 是好东西啊,谢谢分享啊